Publications (with PDFs)

PDF files are provided within fair use. Proper permissions to access the manuscripts are assumed.

42. Heisser, R.H., Aubin, C.A., Peretz, O., Kincaid, N., An, H.S., Fisher, E.M., Sobhani, S., Pepiot, P., Gat, A.D. and Shepherd, R.F., (2021) Valveless microliter combustion for densely packed arrays of powerful soft actuators. Proceedings of the National Academy of Sciences, 118(39) (Main_pdf, SI_pdf) .

41. Ronen R., Gat A.D., Bazant M.Z., Suss M.E. (2021) “Single Flow Multiphase Flow Batteries: Theory” Electrochimica Acta, 138554 (pdf).

40. Boyko, E., Bacheva, V., Eigenbrod M., Paratore F., Gat, A.D., Hardt, S. & Bercovici, M. (2021). “Microscale hydrodynamic cloaking and shielding via electro-osmosis,” Physical Review Letters, 126, 184502 (pdf).

39. Gamus, B., Salem, L., Gat, A. D., & Or, Y. (2020). “Understanding inchworm crawling for soft-robotics,” IEEE Robotics and Automation Letters, 5(2), 1397-1404 (pdf).

38. Goldstein L., Ilssar D. & Gat A.D. (2020) “On Non-Newtonian Effects in Fluidic Shock-Absorbers,” Applied Physical Letters 117, 153701 (pdf).

37. Gamus, B., Gat, A.D., & Or, Y. (2020). “Dynamic Inchworm Crawling: Performance Analysis and Optimization of a Three-Link Robot,” IEEE Robotics and Automation Letters, 6(1), 111-118 (pdf).

36. Boyko E., Bercovici M. & Gat A.D. (2020) “Interfacial instability of thin films in soft microfluidic configurations actuated by electro-osmotic flow,” Physical Review Fluids (pdf).

35. Brietman P., Yoav Matia & Gat A.D. (2020) “Fluid Mechanics in Pneumatic Soft Robots,” Soft Robotics DOI: 10.1089/soro.2020.0037 (pdf).

34. Peretz O., Mishra A.K., Shepherd R.K. & Gat A.D. (2020) “Underactuated fluidic control of a continuous multistable membrane,” Proceedings of the National Academy of Sciences 117 (10), 5217-5221 (Main_pdf, SI_pdf).

33. Boyko E., Eshel R., Gat A.D. & Bercovici M. (2020) “Non-uniform electro-osmotic flow drives fluid–structure instability,” Physical Review Letters (Main_pdf, SI_pdf).

32. Ilssar D, & Gat A.D. (2020) “On the inflation and deflation dynamics of liquid-filled, hyperelastic balloons,” Journal of Fluids and Structures 94, 102936. (pdf)

31. Gamus B., Salem L., Gat A.D. & Or Y. (2020) “Understanding Legged Crawling for Soft-Robotics,” IEEE Robotics and Automation Letters 5 (2), 1397-1404. (pdf)

30. Ben-Haim, E., Salem, L., Or, Y.& Gat A. D. (2019). “Single-Input Control of Multiple Fluid-Driven Elastic Actuators Via Interaction Between Bi-Stability and Viscosity,” Soft Robotics (pdf).

29. Vurgaft A., Elbaz S.B. & Gat A.D. (2019) “Forced motion of a cylinder within a liquid-filled elastic tube – a model of minimally invasive medical procedures,” J. Fluid Mech. 881, 1048-1072 (pdf).

28. Salem, L., Gamus, B., Or, Y.& Gat A. D. (2019) “Leveraging viscous peeling in soft actuators and reconfigurable microchannel networks,” Soft Robotics (pdf).

27. Boyko, E., Eshel, R., Gommed, K., Gat, A.D. & Bercovici, M. (2019) “Elastohydrodynamics of a pre-stretched finite elastic sheet lubricated by a thin viscous film with application to microfluidic soft-actuators,” J. Fluid Mech. 862, 732-752. (pdf).

26. Peretz, O. & Gat A.D. (2019) “Forced vibrations as a mechanism to suppress flutter – an aeroelastic Kapitza’s pendulum,” J. Fluids Structures, 85, 138-148. (pdf).

25. Tulchinsky, A., Gat, A.D. (2019) “Frequency Response and Resonance of Elastic Hele-Shaw Cells with Application to Mechanical Filters,” J. Sound & Vib, 438, 83-98. (pdf)

24. Elfassi, R., Elimelech, Y. & Gat A.D. (2018) “Propulsion and maneuvering of an artificial microswimmer by two closely spaced waving elastic filaments,” Phys. Rev. Fluids, 3, 044203. (pdf)

23. Elbaz, S., Jacob, H. & Gat A.D. (2018) “Transient gas flows in elastic microchannels,” J. Fluid Mech. 846, 460-481. (pdf)

22. Gamus, B., Ben-Haim, E., Salem, L., Gat, A.D. & Or, Y. (2018) “Interaction between Inertia, Viscosity and Elasticity in Soft Robotic Actuator with Fluidic Network,”  IEEE Transactions on Robotics, 34(1), 81-90. (pdf)

21. Boyko, E., Bercovici, M. & Gat A.D. (2017) “Viscous-elastic dynamics of power-law fluids within an elastic cylinder,” Physical Review Fluids 2, 073301. (pdf_main, pdf_supp)

20. Friedman, Y. & Gat A.D. (2017) “Dynamics of an elastic sphere containing a thin creeping region and immersed in an acoustic region for similar viscous-elastic and acoustic time- and length-scales,” J. Fluid Mech. 818, 100-115. (pdf)

19. Matia, Y., Elimelech, T. & Gat A.D. (2017) “Leveraging internal viscous flow to extend the capabilities of beam-shaped soft-robotic actuators,” Soft Robotics, 10.1089/soro.2016.0048 (pdf).

18. Rubin, S., Tulchinsky, A., Gat A.D. & Bercovici, M. (2017) “Elastic deformations driven by non-uniform lubrication flows,” J. Fluid Mech. 812, 841-865. (pdf)

17. Boyko, E., Bercovici, M. & Gat A.D. (2016) “Flow of Power-Law Liquids in a Hele-Shaw Cell Driven by Non-Uniform Electroosmotic Slip in the Case of Strong Depletion,” J. Fluid Mech. 807, 235-257 (pdf).

16. Elbaz, S. & Gat, A.D. (2016) “Axial Creeping Flow in the Gap between a Rigid Cylinder and a Concentric Elastic Tube,” J. Fluid Mech. 806, 580-602. (pdf)

15. Tulchinsky A. & Gat A.D. (2016) “Transient Dynamics of Elastic Hele-Shaw Cell Due to External Forces with Application to Impulse Mitigation,” J. Fluid Mech. 800, 517-530. (pdf)

14. Sarig, I., Starosvetsky, Y. & Gat A.D. (2016) “Interaction Forces Between Microfluidic Droplets in a Hele-Shaw Cell,” J. Fluid Mech. 800, 264-277. (pdf)

13. Boyko, E., Rubin, S., Gat, A.D. & Bercovici, M. (2015) “Flow Patterning in Hele-Shaw Configurations using Non-Uniform Electroosmotic Slip,” Physics of Fluids 27(10) DOI: 10.1063/1.4931637 (pdf).

12. Tulchinsky, A. & Gat, A.D. (2015) “Viscous-poroelastic interaction as mechanism to create adhesion in frogs’ toe pads,” J. Fluid Mech. 758, 288-303 (pdf).

11. Matia, Y. & Gat, A.D. (2015) “Dynamics of elastic beams with embedded fluid-filled parallel-channel networks,” Soft Robotics 2(1), 42-47 (pdf).

10. Elbaz, S.B. & Gat, A.D. (2014) “Dynamics of Viscous Liquid within a Closed Elastic Cylinder Subject to External Forces with Application to Soft-Robotics,” J. Fluid Mech. 758, 221-237 (pdf).

9. Navaz, H., Zand, A., Atkinson, T., Gat, A.D., Nowakowski, A. & Paikoff, S. (2014) “Contact Dynamic Modeling of a Liquid Droplet between Two Approaching Porous Materials,” AIChe 60(6) 2346–2353 (pdf).

8. Gat A.D. & Gharib M. (2013) “Elasto-Capillary Coalescence of Multiple Parallel Sheets,” J. Fluid Mech. 723, 692-705 (pdf).

7. Gat, A, Vahdani, A, Navaz, H, Nowakowski, A. and Gharib, M. (2013) “Asymmetric Wicking and Reduced Evaporation Time of Droplets Penetrating a Thin Double-Layered Porous Material,” Appl. Phys. Lett. 103, 134104 (pdf).

6. Gat A.D., Navaz H. & Gharib M. (2012) “Wicking of a Liquid Bridge Connected to a Moving Porous Surface,” J. Fluid Mech. 703, 315-325 (pdf).

5. Gat A.D., Navaz H. & Gharib M. (2011) “Dynamics of freely moving plates connected by a shallow liquid bridge,” Physics of Fluids 23, 097101 (pdf).

4. Gat A.D., Frankel I. & Weihs D. (2010) “Compressible flows through micro-channels with sharp edged turns and bifurcations,” Microfluidics and Nanofluidics 8(5), 619-629 (pdf).

3. Gat A.D., Frankel I. & Weihs D. (2010) “Gas flows through shallow T-junctions and parallel micro-channel networks,” Physics of Fluids 22, 092001 (pdf).

2. Gat A.D., Frankel I. & Weihs D. (2009) “A higher-order Hele-Shaw approximation with application to gas flows through shallow micro-channels,” J. Fluid Mech. 638, 141-160. (pdf, Jacobs prize for best publication of 2009 from the Technion – Israel Institute of Technology.)

1. Gat A.D., Frankel I. & Weihs D. (2008) “Gas flows through constricted shallow micro-channels,” J. Fluid Mech. 602, 427-442 (pdf).