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Dynamics of viscous liquid within a closed
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application to soft robotics
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Viscous flows in contact with elastic structures apply both pressure and shear stress
at the solid–liquid interface and thus create internal stress and deformation fields
within the solid structure. We study the interaction between the deformation of elastic
structures, subject to external forces, and an internal viscous liquid. We neglect
inertia in the liquid and solid and focus on viscous flow through a thin-walled
slender elastic cylindrical shell as a basic model of a soft robot. Our analysis yields
an inhomogeneous linear diffusion equation governing the coupled viscous–elastic
system. Solutions for the flow and deformation fields are obtained in closed analytical
form. The functionality of the viscous–elastic diffusion process is explored within
the context of soft-robotic applications, through analysis of selected solutions to the
governing equation. Shell material compressibility is shown to have a unique effect
in inducing different flow and deformation regimes. This research may prove valuable
to applications such as micro-swimmers, micro-autonomous systems and soft robotics
by allowing for the design and control of complex time-varying deformation fields.
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1. Introduction
Viscous flows within a solid body apply both pressure and shear stress at the solid–

liquid interface and thus create stress and deformation fields within the solid structure,
which in turn affect the flow field. The interaction between low-Reynolds-number
liquid flow and the deformation of solid structures is relevant to various research
areas such as instabilities in micro-fabrication processes (Al-Housseiny, Christov &
Stone 2013), self-folding of solid sheets (commonly referred to as capillary origami,
studied by Py et al. 2007; Pineirua, Bico & Roman 2010; Antkowiak et al. 2011),
densification of patterned arrays of carbon nanotubes (studied by Huang et al. 2007;
Zhao et al. 2010; De Volder et al. 2011), self-assembly and modification of the
mechanical and geometrical properties of arrays of solid structures (studied by
Chandra et al. 2009; Pokroy et al. 2009; Elwenspoek et al. 2010; Duprat, Aristoff &
Stone 2011; Kang et al. 2011; Gat & Gharib 2013), biological flows (Toppaladoddi &
Balmforth 2014) and soft robotics (Steltz et al. 2009; Ilievski et al. 2011; Shepherd
et al. 2011; Martinez et al. 2012; Marchese, Onal & Rus 2014).
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FIGURE 1. A schematic description of the elastic shell, the coordinate system and the
external stress. The radial and axial coordinates are r and z, respectively. The undeformed
inner and outer cylinder radii are ri and ro, respectively. The shell is clamped at z= 0 and
free at z = l. The external stress components acting on the cylinder are radial stress pe,
shear stress σe and an external axial force fe acting at z= l.

The interaction between fluid and solid dynamics for the case of viscous flow
through elastic cylinders has been studied extensively in the context of collapsible
tubes (e.g. Heil & Pedley 1995; Lowe & Pedley 1995; Heil 1996, 1997, 1998), studies
of pipes conveying fluid (e.g. Païdoussis 1998) and flows in arteries (e.g. Canic &
Mikelic 2003). The current study brings forth an analysis of the viscous–elastic
interaction problem of a closed axisymmetric shell containing a viscous liquid. The
aim of this work is to apply models and methods used in the study of biological
flows to study time-varying deformation patterns in soft robotics (such as Shepherd
et al. 2011; Morin et al. 2012; Martinez et al. 2013; Shepherd et al. 2013; Stokes
et al. 2013).

2. Analysis
2.1. Problem definition

We study the fluid–structure interaction dynamics of viscous, Newtonian, incompressible
flow through a slender linearly elastic cylinder (see figure 1) with negligible inertia
of the liquid and solid. The relevant variables and parameters are time t, axial
coordinate z, radial coordinate r, axial liquid speed uz, radial liquid speed ur, liquid
pressure p, liquid viscosity µ, solid radial deformation dr, solid axial deformation dz,
solid strain eij and stress σij (acting on the plane normal to coordinate i and in
the direction of coordinate j), solid Young’s modulus E, solid Poisson’s ratio ν,
inner cylinder radius ri, outer cylinder radius ro and cylinder length l. An arbitrary
external stress and pressure field is applied on the cylinder at r= ro + dr, defined by
σe = σzr(r = ro + dr, z, t) and pe =−σrr(r = ro + dr, z, t), respectively. An axial force
fe(t) is applied at z= l.

We define the small parameter ε1 representing the slenderness of the cylinder,

ε1 = ri

l
� 1, (2.1)

the small parameter ε2 representing the thinness of the cylinder wall,

ε2 = ro − ri

ri
� 1 (2.2)
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and the small parameter ε3 representing small deformations of the solid,

ε3 = d∗r
ro
∼ d∗z

l
� 1, (2.3)

where d∗r is the characteristic radial deformation and d∗z is the characteristic axial
deformation. Normalized variables are hereafter denoted by uppercase letters and
characteristic values are denoted by asterisks.

2.2. Elastic problem
The governing equations for axisymmetric linearly elastic material with negligible
inertia and small deformations are (Mollmann 1981) conservation of momentum in
the r and z directions,

∂

∂r
(rσrr)+ ∂

∂z
(rσzr)− σθθ = 0, (2.4)

∂

∂r
(rσzr)+ ∂

∂z
(rσzz)= 0, (2.5)

respectively, the strain–displacement relations,

err = ∂dr

∂r
, (2.6)

eθθ = dr

r
, (2.7)

ezz = ∂dz

∂z
, (2.8)

ezr = 1
2

(
∂dr

∂z
+ ∂dz

∂r

)
(2.9)

and Hooke’s law,

Eezz = σzz − ν(σrr + σθθ), (2.10)
Eerr = σrr − ν(σzz + σθθ), (2.11)
Eeθθ = σθθ − ν(σrr + σzz), (2.12)

Eezr = (1+ ν)σzr. (2.13)

The boundary conditions representing the stress applied by the liquid and the external
stress are

σrr(r= ri)= p, (2.14)
σrr(r= ro + dr)=−pe, (2.15)

σzr(r= ri + dr)=−µ∂uz

∂r
, (2.16)

σzr(r= ro + dr)= σe. (2.17)

Here we have omitted the term −2µ∂ur/∂r in (2.14) and the term −µ∂ur/∂z in (2.16)
since these terms are negligible compared with p and ∂uz/∂r, respectively (this can
be obtained by substitution of characteristic values from § 2.3 and is utilized in § 2.2
to simplify the derivation).
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Following elastic shell theory (Gibson 1965; Mollmann 1981), we define stress
resultants for the forces nij as

nij =
∫ ro

ri

σijdr, (2.18)

and moments mij as

mij =
∫ ro

ri

σijrdr. (2.19)

We define the normalized coordinates,

Z = z
l
, R= r

ri
, (2.20a,b)

normalized stresses and pressure,

Σrr = σrr

p∗
, Σzr = σzr

ε1p∗
, P= p

p∗
(2.21a–c)

and normalized deformations,

Dr = dr

d∗r
, Dz = dz

d∗z
, (2.22a,b)

where p∗ is the characteristic pressure drop, Z is the normalized axial coordinate, R
is the normalized radial coordinate, Σij is the normalized stress, Dr and Dz are the
normalized radial and axial deflections and P is the normalized liquid pressure.
The externally applied forces are normalized accordingly,

Pe = pe

p∗
, Σe = σe

ε1p∗
, Fe = fe

p∗πr2
i
. (2.23a–c)

We normalize the resultant Nzz = nzz/rip∗. The normalized time is T = t/t∗, where the
characteristic time t∗ is to be obtained by relation to the fluidic analysis. To obtain
the equilibrium conditions in terms of resultants, we integrate the axial momentum
equation with regard to z. Force balance in the axial direction yields

Nzz(Z, T)= P(Z, T)−KP(1, T)+ Fe(T)
2

+
∫ 1

Z
Σe(ζ , T)dζ , (2.24)

where K = 0 for a closed boundary at Z = 1 (as illustrated in figure 1) and K = 1
for an open boundary at Z= 1. The term KP(1, T) in (2.24) appears due to the axial
force balance requirement at the clamped end, Z = 0.

In order to relate (2.5) into (2.4), we derive (2.5) with regards to z, multiply the
axial momentum equilibrium equation by r− rm (where rm= (ri+ ro)/2) and integrate
(2.5) with regard to r from ri to ro,

∂nzr

∂z
∼ ∂

2mzz

∂z2
+ ro

∂σe

∂z
− ri

∂σzr(ri)

∂z
. (2.25)
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By integrating the radial momentum equation,

rip− rope + ri
∂nzr

∂z
− nθθ = 0, (2.26)

we can substitute (2.25) into (2.26) to eliminate ∂nzr/∂z and obtain

rip− rope + ri

(
∂2mzz

∂z2
+ ro

∂σe

∂z
− ri

∂σzr(ri)

∂z

)
− nθθ ∼ 0. (2.27)

Normalizing (2.27) we thus obtain the leading-order relation,

P− Pe −Nθθ ∼O(ε2
1), (2.28)

where n∗θθ = rip∗ and Nθθ = nθθ/rip∗. We define σ ∗rr = p∗ (where σ ∗zz= σ ∗θθ = p∗/ε2) and
thus Hooke’s law can be used to establish the following strain–stress relations,

Σzz ∼ ε2E
p∗(1− ν2)

(ezz + νeθθ) (2.29)

and
Σθθ ∼ ε2E

p∗(1− ν2)
(eθθ + νezz), (2.30)

representing Love’s first approximation (Love 1888). Following shell theory (Dugdale
& Ruiz 1971), we apply the Kirchhoff hypothesis and describe the displacement
field in terms of the radial d̄r and axial d̄z displacements of the mid-section, denoted
by overbars,

d̄z = dz − (r− rm)
∂dr

∂z
, d̄r = dr (2.31a,b)

and thus we can represent the strain as a function of the deformation by

ezz = ∂ d̄z

∂z
− (r− rm)

∂2d̄r

∂z2
, eθθ = d̄r

r
(2.32a,b)

and express the resultants in terms of deformation,

Nzz ∼ Eε2ε3

p∗(1− ν2)

(
∂D̄z

∂Z
+ νD̄r

)
, (2.33)

Nθθ ∼ Eε2ε3

p∗(1− ν2)

(
ν
∂D̄z

∂Z
+ D̄r

)
. (2.34)

We now utilize (2.24) and (2.33) to define ∂D̄z/∂Z in terms of D̄r,

∂D̄z

∂Z
= p∗(1− ν2)

Eε2ε3

(
P(Z, T)−KP(1, T)+ Fe(T)

2
+
∫ 1

Z
Σe(ζ , T)dζ

)
− νD̄r. (2.35)

From order-of-magnitude we obtain

d∗r
ri
= p∗

Eε2
, (2.36)

which relates the requirement of small deformations to the characteristic pressure. We
substitute (2.34) and (2.35) into (2.28) to obtain a governing equation for the radial
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deflection D̄r,

D̄r(Z, T)∼ P(Z, T)− Pe − ν
(

P(Z, T)−KP(1, T)+ Fe(T)
2

+
∫ 1

Z
Σe(ζ , T)dζ

)
,

(2.37)
which substituted into (2.35) yields the corresponding relation for the axial deflection
D̄z,

∂D̄z

∂Z
= P(Z, T)−KP(1, T)+ Fe(T)

2
+
∫ 1

Z
Σe(ζ , T)dζ − ν(P(Z, T)−Pe(Z, T)). (2.38)

2.3. Fluidic problem
The governing equations for axisymmetric incompressible Newtonian flow are
momentum conservation in the r and z directions,

ρ

(
∂ur

∂t
+ ur

∂ur

∂r
+ uz

∂ur

∂z

)
= −∂p

∂r
+µ

[
1
r
∂

∂r

(
r
∂ur

∂r

)
+ ∂

2ur

∂z2
− ur

r2

]
, (2.39)

ρ

(
∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z

)
= −∂p

∂z
+µ

[
1
r
∂

∂r

(
r
∂uz

∂r

)
+ ∂

2uz

∂z2

]
+ ρg, (2.40)

respectively, and conservation of mass,

1
r
∂

∂r
(rur)+ ∂uz

∂z
= 0. (2.41)

The boundary conditions are no-slip and no-penetration at the solid–liquid interface,

ur(r= ri + dr)= ∂dr

∂t
, uz(r= ri + dr)= ∂dz

∂t
(2.42a,b)

and pressure at the inlet
p(z= 0)= p0(t), (2.43)

where p0(t) is an arbitrary function of time. We define the normalized axial and radial
speeds,

Uz = uz

u∗z
, Ur = ur

u∗r
, (2.44a,b)

and order-of-magnitude analysis of (2.41) yields

u∗r
u∗z
∼ ri

l
= ε1, u∗z =

ε1rip∗

µ
. (2.45)

We define normalized gravity as G=ρgl/p∗. Substituting (2.45) into (2.39)–(2.41) and
normalizing yields

∂P
∂Z
= 1

R
∂

∂R

(
R
∂Uz

∂R

)
+G+O

(
ε2

1,
ρr2

i

µt∗

)
, (2.46)

∂P
∂R
=O

(
ε2

1,
ε2

1ρr2
i

µt∗

)
(2.47)
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and
∂Uz

∂Z
+ 1

R
∂

∂R
(RUr)= 0. (2.48)

Integrating (2.46) with regard to R and applying (2.42) in normalized form, we attain

Uz ∼ d∗z
t∗u∗z

∂Dz

∂T
+ 1

4

(
∂P
∂Z
−G

)
[R2 − (1+ ε3Dr(Z))2]. (2.49)

We thus obtain the characteristic time scale of the viscous–elastic interaction as

t∗ = d∗z
u∗z
= µ

Eε2ε
2
1
, (2.50)

balancing the pressure gradient term with the shell’s axial motion term. Substituting
(2.49) into (2.48) and integrating with regard to R we obtain a relation between the
liquid pressure field and the axial and radial deformations of the elastic shell,

1
2
∂2Dz

∂T∂Z
− 1

16
∂2P
∂Z2
+ ∂Dr

∂T
∼ 0. (2.51)

2.4. Fluidic–elastic problem
We substitute (2.37) and (2.38) into (2.51) to obtain the governing equation for the
fluidic pressure,

∂P
∂T
− 1

4 (5− 4ν)
∂2P
∂Z2
∼ 2ν − 1

5− 4ν

(
2
∫ 1

Z

∂Σe

∂T
dζ + ∂Fe

∂T
−K

∂P1

∂T

)
+ 4− 4ν

5− 4ν
∂Pe

∂T
, (2.52)

with the initial condition P(Z, 0)=Pi(Z) and appropriate boundary conditions. For the
case of an inlet the boundary condition will take the form P=P0(T), whereas for the
case of a closed boundary the condition will be ∂P/∂Z =G.

The corresponding dimensional equation reads

∂p
∂t
− ∂

2p
∂z2

Eri(ro − ri)

4 (5− 4ν) µ
= 2ν − 1

5− 4ν

[(
∂fe

∂t
+ 2πri

∫ l

z

∂σe

∂t
dζ
)

1
πr2

i
−K

∂p(l, t)
∂t

]
+ ∂pe

∂t
4− 4ν
5− 4ν

. (2.53)

From (2.50) and (2.36), the requirements of negligible inertia and small deformations
can be expressed by the physical conditions,

α2 = ρr2
i

µt∗
= Eε2ε

2
1ρr2

i

µ2
� 1,

d∗r
ri
= p∗

ε2E
� 1, (2.54a,b)

respectively. The requirement for negligible inertia derived from the squared
Womersley number, denoted by α2, depends only on the solid and liquid physical
properties, and not on the external forces and stress applied on the configuration.

We note that for ν=1/2, corresponding to an incompressible solid, axial stress does
not affect the pressure field within the liquid. In addition, for the case of an open
boundary at Z = 1 the function P1(T) which describes the boundary condition also
appears in the inhomogeneous part of the governing equation. This effect comes into
play for ν < 1/2 representing an added level of influence of solid compressibility on
the fluidic pressure field. We also note that the Poisson’s ratio dependent coefficients
of (2.52) are smooth functions throughout the physical range −1< ν < 1/2.



228 S. B. Elbaz and A. D. Gat

3. Results

The governing equation (2.52) may be solved for a variety of boundary and initial
conditions, representing external stresses acting on the cylinder or internal pressures
at the inlet. After the calculation of the pressure P by (2.52), the deformations Dr, Dz

can be calculated by (2.37) and (2.38) and the fluid mass-flux Q can be calculated by
integration of (2.49). In all cases the shell is clamped at Z=0 and gravity is neglected.
We will present solutions for several scenarios relevant to soft robotics.

3.1. Transient dynamics due to sudden forces
Figures 2, 3 and 5 present the pressure, mass flux, radial deformation and axial
deformation due to sudden forces acting on the cylinder. The boundary at Z = 0 is
open and the boundary at Z = 1 is closed, ∂P/∂Z = 0. Figure 4 presents the settling
time of the solution in the case of a spatially localized force as a function of its
axial location. In all cases the initial conditions are P(Z, 0)=Dr(Z, 0)=Dz(Z, 0)= 0.
Dashed lines denote incompressible solids, ν= 0.5 and solid lines denote compressible
solids, ν = 0.33. Blue, red, green and magenta lines correspond to normalized time,
T = 0.01, 0.1, 1 and 10, respectively.

3.1.1. Sudden change of inlet pressure
Change of the inlet pressure is the main mechanism used to actuate fluidic-based

soft robots. Our analysis will include the transient viscous dynamics associated with
the sudden increase of inlet pressure, so far neglected in the design of soft robots.
The relevant boundary condition for this case is P(0, T)= H(T), where H(T) is the
Heaviside function. Solution of (2.52) for this case yields

P(Z, T)= 1− 4
π

∞∑
n=1

sin
[
(2n− 1)πZ/2

]
2n− 1

exp
[
−(2n− 1)2π2

16(5− 4ν)
T
]
. (3.1)

Solution (3.1) is presented in figure 2. For ν= 0.5 the axial displacement (figure 2d)
is 0 for all T , since the increase in deflection due to the axial stress by the liquid is
of equal magnitude and opposite sign to the axial deflection emanating from the radial
deflection Dr (see (2.38)). This effect in Dz corresponds to different behavior of the
mass flux Q within the cylinder for ν = 0.5 compared with ν = 0.33.

3.1.2. Sudden spatially localized radial force acting on the external shell
An external force suddenly applied on a soft structure will create flow within the

structure due to displacement of liquid driven by the solid deformation. The reaction
to such a sudden force will be a viscous–elastic diffusion process. We examine a
sudden axisymmetric radial force acting at Z = 3/4 from time T = Ts. The relevant
inhomogeneous term in (2.52) is Pe(Z, T)=H(T − Ts)1(Z− 3/4), where H(T) is the
Heaviside function and 1(Z) is Dirac’s delta. The obtained solution of (2.52) for this
case is

P(Z, T) = H(T − Ts)
8− 8ν
5− 4ν

∞∑
n=1

sin
[
(2n− 1)πZs

2

]
sin
[
(2n− 1)πZ

2

]
× exp

[
−(2n− 1)2π2

16(5− 4ν)
(T − Ts)

]
, (3.2)
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FIGURE 2. (Colour online) Viscous–elastic dynamics due to inlet pressure P(0, T) =
H(T), where H(T) is the Heaviside function: (a) pressure versus axial coordinate; (b)
mass flux versus axial coordinate; (c) radial deformation versus axial coordinate; (d)
axial deformation versus axial coordinate. The initial conditions are P(Z, 0)=Dr(Z, 0)=
Dz(Z, 0) = 0. The shell is open at Z = 0 and closed at Z = 1. The shell is clamped
at Z = 0. Dashed lines denote incompressible solids, ν = 0.5 and solid lines denote
compressible solids, ν=0.33. Blue, red, green and magenta lines correspond to normalized
time, T = 0.01, 0.1, 1 and 10, respectively. In (d) all dashed lines are at 0 for all Z and
are replaced by a single black dashed line.

where (Zs, Ts) are the location and time of the shock. Results are presented in
figure 3. Initially a symmetric pressure is created around the location of the force, as
T increases the flux becomes negative as fluid exits the channel due to the change
of volume. We note that for an incompressible solid (ν = 0.5), in similar fashion
to § 3.1.1, all Dz lines fall on a single curve with a sudden jump at the location of
the force. The radial deflection follows the same pattern as the pressure despite the
singularity at Z = 3/4 resulting from the impact. We may examine the settling time
of the solution, beyond which the initial state of equilibrium is regained. We define
the state of equilibrium in terms of the radial displacement,

Dr(Z, T; Zs) <A eq
r , (3.3)
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FIGURE 3. (Colour online) Viscous–elastic dynamics due to external radial pressure
Pe = H(T)1(Z − 3/4), where H(T) is the Heaviside function and 1(Z) is Dirac’s delta:
(a) pressure versus axial coordinate; (b) mass flux versus axial coordinate; (c) radial
deformation versus axial coordinate; (d) axial deformation versus axial coordinate. The
shell is open at Z = 0 and closed at Z = 1. The shell is clamped at Z = 0. The initial
conditions are P(Z, 0)=Dr(Z, 0)=Dz(Z, 0)= 0. Dashed lines denote incompressible solids,
ν= 0.5 and solid lines denote compressible solids, ν= 0.33. Blue, red, green and magenta
lines correspond to normalized time, T=0.01, 0.1, 1 and 10, respectively. In (d) all dashed
lines fall on a single curve and are replaced by a single black dashed line.

where for a given shock location Zs the radial displacement has fallen below a
threshold amplitude of A eq

r , this definition is valid outside the singularity of Z = Zs.
A good approximation for the settling time Teq can be attained based on the first
mode of the Fourier series (3.2) yielding

Teq(Zs)= 16(5− 4ν)
π2

log
[

8(1− ν)2
(5− 4ν)

sin(πZs/2)
A eq

r

]
. (3.4)

Figure 4 shows a comparison of the first mode and full series solution for both ν =
0.33 and ν= 0.5. A typical value of A eq

r = 0.1 was used, in which case the first mode
approximation and numerical extraction are in unison as of Zs > 0.1. As the location
of the shock approaches the inlet the solution decays faster, thus for a given threshold
A eq

r additional modes of the sum must be taken into account.
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FIGURE 4. (Colour online) The settling time Teq to equilibrium state as a function of
impact location Zs in the case of an external radial pressure Pe = H(T − Ts)1(Z − Zs),
where H(T) is the Heaviside function and 1(Z) is Dirac’s delta. Dashed lines denote
incompressible solids, ν = 0.5, and solid lines denote compressible solids, ν = 0.33. The
numerical extraction (blue) is plotted alongside the first mode approximation (red) of (3.2)
in the case of A eq

r = 0.1. Analytic approximation valid as of Zs > 0.1.

3.1.3. Sudden axial force acting at Z = 1
In this case we examine a sudden axial force acting on the cylinder at Z = 1,

corresponding to an impact with an external object, represented by Fe =−H(T). The
relevant solution of (2.52) for this case is

P(Z, T)= 4(1− 2ν)
π(5− 4ν)

∞∑
n=1

sin
[
(2n− 1)πZ/2

]
2n− 1

exp
[
−(2n− 1)2π2

16(5− 4ν)
T
]
. (3.5)

Results are shown in figure 5. For ν = 0.33 there is a sudden increase in pressure
within the cylinder at T = 0 followed by deflation for T > 0. Here P and Q propagate
similarly to the inflation case (figure 2), varying in magnitude and direction. For ν =
0.5 the volume change due to axial deformation is canceled out by the volume change
due to radial deformation and there is, remarkably, no effect on the pressure P or flux
Q of the liquid within the cylinder. The radial deformation in the case of ν = 0.5 is
constant, a result of solid displacement alone. The axial deformation is nearly linear
for both ν = 0.5 and 0.33.

3.2. Steady-state solution for oscillating inlet pressure
Various practical applications may involve oscillations and periodic motions. We
illustrate such a case with a closed boundary at Z = 0 and an open boundary
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FIGURE 5. (Colour online) Viscous–elastic dynamics due to external axial force Fe =
−H(T), where H(T) is the Heaviside function: (a) pressure versus axial coordinate; (b)
mass flux versus axial coordinate; (c) radial deformation versus axial coordinate; (d)
axial deformation versus axial coordinate. The initial conditions are P(Z, 0)=Dr(Z, 0)=
Dz(Z, 0) = 0. The shell is open at Z = 0 and closed at Z = 1. The shell is clamped
at Z = 0. Dashed lines denote incompressible solids, ν = 0.5 and solid lines denote
compressible solids, ν=0.33. Blue, red, green and magenta lines correspond to normalized
time, T = 0.01, 0.1, 1 and 10, respectively. All dashed lines in this figure fall on a single
curve and are replaced by a single black dashed line.

at Z = 1 (K = 1 in (2.52)). Corresponding boundary conditions are given by
∂P(0, T)/∂Z = 0 and P(1, T) = cos(ΩT), Ω representing the deviation from the
base frequency of 1/t∗. The shell is clamped at Z = 0. The initial conditions are
P(Z, 0) = Dr(Z, 0) = Dz(Z, 0) = 0. The steady-state solution of (2.52) for these
boundary conditions is given by

P(Z, T)=Re
{[
(4− 2ν) cosh[Z(1+ i)

√
(10− 8ν)Ω]

(5− 4ν) cosh[(1+ i)
√
(10− 8ν)Ω] +

1− 2ν
5− 4ν

]
exp(iΩT)

}
. (3.6)

Figure 6 presents viscous–elastic dynamics due to oscillating pressure at Z = 1. In
figure 6(a–d) Ω = 1, in figure 6(e–h) Ω = 3 and in figure 6(i–l) Ω = 30. Solid
lines (blue online) denote compressible solids (ν = 0.33) and dashed lines (red
online) denote incompressible solids (ν = 0.5). Figure 6(a,e,i) present pressure versus
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FIGURE 6. (Colour online) Viscous–elastic dynamics due to an oscillatory inlet boundary
pressure at Z= 1, P(1,T)= cos(ΩT) and closed boundary at Z= 0, ∂P(0,T)/∂Z= 0. The
shell is clamped at Z= 0. In (a–d) Ω = 1, in (e–h) Ω = 3 and in (i–l) Ω = 30. Solid lines
(blue online) denote compressible solids, ν = 0.33 and dashed lines (red online) denote
incompressible solids, ν = 0.5. In (a,e,i) the pressure is presented versus axial coordinate.
In (b,f,j) wave amplitude is presented versus axial coordinate. In (c,g,k) wave phase is
presented versus axial coordinate. In (d,h,l) the mass flux is presented versus the axial
coordinate. For (a,d,e,h,i,l), eight lines are plotted evenly over a single time period.

axial coordinate. Figure 6(b,f,j) depict the wave amplitude versus axial coordinate.
Figure 6(c,g,k) depict the wave phase versus axial coordinate. Figure 6(d,h,l) present
mass flux versus axial coordinate. For figure 6(a,d,e,h,i,l), eight lines are plotted
evenly over a single time period.

For Ω � 1, for all values of ν the solution exhibits a spatially uniform pressure
regime, the common mode in current soft-robotic applications. For Ω = 1
(figure 6a–d), the base frequency of the system, we observe a growing phase diffusion
for both ν = 0.33 and 0.5, where for ν = 0.5 pressure oscillations are less damped.
For Ω = 3 (figure 6e–h) we observe antiphase pressure oscillations past a contraction
region of the oscillations for ν= 0.33, but not for ν= 0.5, where for ν= 0.33 pressure
oscillations are less damped. For Ω = 30� 1 (figure 6i–l) the pressure contraction is
amplified and for ν = 0.5 the pressure oscillations are limited to a length scale of the
order of ≈ ri

√
Eε2t∗/µ (the natural length scale of the externally forced time scale

t∗/Ω , see (2.50)). For ν = 0.33 the pressure oscillations past the contraction are not
damped, regardless of inlet pressure frequency. Thus, high-frequency oscillations can
be applied and detected for ν = 0.33 but not ν = 0.5.
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3.3. Solutions for a fully closed shell
The case of a cylindrical shell closed at both boundaries (Z = 0 and Z = 1) and
clamped at Z = 0 is represented by the Neumann boundary condition on the pressure
field, ∂P(0, T)/∂Z = ∂P(1, T)/∂Z = 0 (K = 0 in (2.52)). We are interested in
the viscous–elastic dynamics as a result of external impact or actuation. We first
examine axial imposition of the shell at Z= 1 prescribed by an arbitrary forcing term
Fe=−f (T) in (2.52). The solution for the internal pressure field in this case is simply,

P(Z, T)= 1− 2ν
5− 4ν

f (T), (3.7)

a reproduction of the external forcing. Solving for the radial and axial displacements
yields

Dr(Z, T)= ν
2 − 1

4ν − 5
f (T), Dz(Z, T)=−2

ν2 − 1
4ν − 5

Zf (T). (3.8a,b)

We note that the volume of the shell is conserved during its motion, as expected of the
incompressible liquid confined within it. By reason of negligible inertia in the solid the
imposition of the wall at Z = 1 produces a uniform motion of the solid experienced
accordingly by the liquid. We illustrate a spatially localized impact with analogous
conditions to those of § 3.1.2. The solution of (2.52) under the Neumann boundary
condition is given by

P(Z, T)=H(T − Ts)
4− 4ν
5− 4ν

[
1+ 2

∞∑
n=1

cos(nπZs) cos(nπZ) exp
(
−n2π2(T − Ts)

4(5− 4ν)

)]
,

(3.9)

where (Zs, Ts) are the location and time of the shock. Results are shown in figure 7.
The localized displacement near the impact, previously diffused by the shell (see
§ 3.1.2) is now translated to a steady-state solution in pressure, radial and axial
deflections (compared with figure 3). This effect also causes significant steady-state
stretching of the shell left of the impact, which does not occur in the case of an
open boundary at Z = 0.

4. Concluding remarks
We studied the time-dependent interaction between viscous flow within an elastic

cylindrical shell and the deformation of the shell in the context of soft-robotic
applications. Utilizing order-of-magnitude analysis and elastic shell theory we obtained
a leading-order diffusion equation relating external forces acting on the cylinder, the
inlet pressure and the pressure distribution within the channel.

From the normalization of the governing equations we obtained the condition
α2 = Eε2ε

2
1ρr2

i /µ
2� 1 for inertial effects to be negligible. This condition represents

the ratio between the relevant inertial–viscous time scale ρr2
i /µ and the viscous–elastic

time scale t∗ = µ/Eε2ε
2
1 . The characteristic speed of the viscous–elastic interaction

is given by l/t∗ = √α2ε2E/ρ. Examining configurations with constant geometric
proportions, ε1 = 0.01 and ε2 = 0.1, and demanding that α2 < 0.1, we may derive
the maximal value of ri for which the assumption of negligible inertia is valid. The
corresponding maximal propagation speed l/t∗ may be attained in the same manner.
Highly viscous liquids such as silicone oil (ρ=0.75×103 kg m−3, µ=60 Pa s) when
interacting with soft materials such as PDMS (polydimethylsiloxane; E= 4× 105 Pa)
yield limiting upper values of ri ≈ 0.3 m and l/t∗ ≈ 1 m s−1. Silicon oil interacting
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FIGURE 7. (Colour online) Viscous–elastic dynamics of a fully closed shell due to
external radial pressure Pe=H(T − Ts)1(Z− 3/4), where H(T) is the Heaviside function
and 1(Z) is Dirac’s delta: (a) pressure versus axial coordinate; (b) mass flux versus axial
coordinate; (c) radial deformation versus axial coordinate; (d) axial deformation versus
axial coordinate. The initial conditions are P(Z, 0) = Dr(Z, 0) = Dz(Z, 0) = 0. The shell
is clamped at Z = 0. Dashed lines denote incompressible solids, ν = 0.5 and solid lines
denote compressible solids, ν = 0.33. Blue, red, green and magenta lines correspond to
normalized time, T = 0.01, 0.1, 1 and 10, respectively. In (d) all dashed lines fall on a
single curve and are replaced by a single black dashed line.

with more rigid materials, such as aluminum (E = 6.9 × 1010 Pa), yields values of
ri ≈ 10−3 m and l/t∗ ≈ 500 m s−1. For water (ρ = 103 kg m−3, µ = 10−3 Pa s) we
obtain a maximal inner radius of ri ≈ 5 × 10−6 m even when interacting with soft
materials such as PDMS, limiting the validity of the analysis in the case of water
and less-viscous liquids to flows in soft micro-geometries. For a more slender and
thinner shell geometry the upper limit on ri will be relaxed in inverse proportion to√
ε2ε1, increasing the range of validity of the model.
Our analysis revealed that in the case of an incompressible material (ν = 0.5), the

effects of external axial force Fe and external shear stress Σe are eliminated from the
governing equation. Solution to the pressure, velocity and deformation fields of the
coupled viscous–elastic system induced by sudden application of external (radial or
axial) stress has been attained in closed form, as well as solutions for sudden change
in inlet pressure and oscillating inlet pressure. Corresponding solutions for the case
of an externally forced fully closed shell have also been attained. In the case of
a compressible shell (ν = 0.33) an antiphase pressure regime has been observed in
response to inlet pressure oscillating at frequencies higher than 1/t∗. The oscillations
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occur passed a contraction region beyond which the corresponding incompressible
shell (ν = 0.5) solution has decayed. This research may be used as a basis for the
design and control of a time-varying deformation field in soft-robotic applications.
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