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ABSTRACT

Shock-absorbers often involve throttling of viscous fluids through small orifices. This gives rise to high rates-of-strain and non-Newtonian behavior
even in fluids which are commonly assumed Newtonian, which affects impact mitigation properties. We here derive an asymptotic approximation
describing the dynamics of fluidic shock-absorbers while focusing on weak Carreau type non-Newtonian effects and annular geometries. We
validate our model by numerical computations and experiments with a medium-sized shock-absorber used to mitigate the impact caused by a free-
falling weight. We then leverage the theoretical model to calculate the shock-absorber’s optimal geometry and present experimental results of the
fabricated optimal configuration, showing good agreement with the theory and nearly optimal impact mitigation properties.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0023938

Hydraulic dampers and shock-absorbers exploit the resistance to
motion of confined fluids in order to temporally redistribute the
momentum of a sudden impact, over a larger time period. The most
common method is throttling fluid through an orifice in various con-
stant or spatially varying sizes and shapes, creating a differential pres-
sure across the orifice, which acts as a retarding force. This retarding
force modifies and slows the motion of the mass.

Common configurations include squeeze-film dampers,
employing the viscous forces exerted by a thin fluidic film trapped
between two closely spaced conformal surfaces, exhibiting normal
motion.1–3 This configuration is typically utilized in small-scale
devices. In macro-scale systems, passive fluidic shock-absorbers
frequently exploit the forces exerted by a lubrication film trapped
between adjacent conformal surfaces, undergoing transverse rela-
tive motion. Such a configuration can be found in the suspension
systems of vehicles,4,5 as well as in tall buildings, where meter-scale
dampers are distributed along them to mitigate vibrations caused
by strong winds and earthquakes.6–8

This work deals with simplified modeling of shock-absorbers
exhibiting non-Newtonian fluidic effects, while focusing on annular
configurations such as the one presented in Fig. 1, aiming to predict
and optimize their performance. The examined system consists of a
shaft and a piston whose radii are rshaft and rpiston, moving along a joint
axis due to an external impact, and viscous fluid contained between
this moving part and a fixed outer cylinder. The volume in which the
fluid resides comprises two chambers bounded between the shaft and

the cylinder and a narrow gap confined between the piston and the
cylinder, whose axial dimension denoted l is the length of the piston.
Denoting the radius of the cylinder rcylinder, we define the thickness of
the narrow gap by h ¼ rcylinder � rpiston and require h� rcylinder
�rshaft. Thus, the dominant fluidic resistance occurs at this narrow
gap, and the pressures in the chambers are considered approximately
uniform. Since the lateral dimensions of the gap are significantly larger
compared with its thickness h� rpiston, the annular configuration is
modeled by a local Cartesian system. In this system, the vertical coor-
dinate corresponding to the radial direction and whose origin is
located at rpiston is denoted by y, whereas the axial coordinate is
denoted by x. Furthermore, since the gap is considered narrow
such that h=l � 1, the reduced Reynolds number defined by
Rer ¼ qu�h2=ll is small, where q, l, and u� are the density of the
fluid, the dynamic viscosity relating the shear stress to the shear rate,
and a characteristic value of the axial flow velocity u. Thus, assuming
that the fluid is incompressible, the flow inside the narrow gap is
described by the lubrication approximation,9 nulling the pressure gra-
dients and flow velocities along the thickness of the gap, and given by
@p=@x ¼ @ðl@u=@yÞ=@y along with @p=@y ¼ 0.

When undergoing significant impacts, hydraulic shock-absorbers
commonly exhibit substantial shear and pressure force variations,
causing, in many cases, the emergence of non-Newtonian effects.10,11

We model the deviations from Newtonian behavior by the
Generalized Newtonian fluid model derived by Carreau,12 which is
extensively utilized to describe biological flows,13,14 emulsions,15,16 and
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more. This model enables capturing the Newtonian behavior
occurring at low shear rates, as well as shear-thinning effects exhibited
in higher rates by silicon oils, which are commonly utilized in
viscous dampers.17–20 The shear-rate dependent viscosity according
to the Carreau constitutive model is given by the form
l ¼ l0½1þ ðk@u=@yÞ2�ðn�1Þ=2, where l0, k, and n are three empiri-
cally determined constants. These represent the zero shear-rate viscos-
ity, a relaxation time constant, and a power-law index corresponding
to shear-thinning when n< 1. Substituting the viscosity model into
the lubrication equation yields the governing equation for the flow
within the narrow gap given by

@p
@x
¼ @

@y
l0 1þ k

@u
@y

� �2
" # n�1ð Þ=2

@u
@y

8<
:

9=
;: (1)

This equation is supplemented by the boundary conditions
uðy ¼ 0Þ ¼ _xp and uðy ¼ hÞ ¼ 0, where _xp is the piston’s velocity.

To consider the dynamic behavior of the system, the fluidic prob-
lem is combined with the integral momentum balance of the piston
given by m€xp ¼ Fpressure þ Fshear þ Fbody. Here, in agreement with the
experimental rig in Figs. 1(c) and 1(d), m denotes only the mass of the
dampened weight, neglecting all other inertial effects. Furthermore,
the terms on the right hand side of Eq. (1) are, in order, the force
applied due to the pressure difference between the uniform pressure
chambers, the shear force exerted by the fluid in the thin gap, and
body forces. Order of magnitude analysis using h� rcylinder � rshaft
allows us to further neglect the shear forces applied to the piston, com-
pared with the normal forces acting on its front and back faces. Thus,
the integral momentum equation governing xpðtÞ is

m€xp � mg � p r2piston � r2shaft
� �

Dpðxp; _xpÞ; (2)

where g is the acceleration due to gravity and Dp is the pressure differ-
ence between the front and back chambers. Modifying the inner radius
of the cylinder as a function of x yields a non-constant gap, enabling
us to optimize the system’s behavior. Here, the axial variation of the
gap is considered mild such that dh=dx� 1, allowing us to refer to it
as spatially constant, e.g.,�hðxpðtÞÞ.

We now wish to find a closed-form solution of Eq. (1), account-
ing for the behavior of the fluid inside the narrow gap. For this, we
normalize it by U ¼ u=u�; Y ¼ y=h�; X ¼ x=l, and P ¼ p=ðu�ll0=

ðh�Þ2Þ, where h� is a typical thickness of the gap. Furthermore, u� is
the characteristic flow velocity defined as the volumetric flow rate out
of the upstream chamber, averaged by the gap’s cross section, thus
given by u� � _xp½pðr�cylinderÞ

2 � pr2shaft�=2prpistonh�. The latter leads to
the following nondimensional form of Eq. (1): @P=@X

¼ @ ½1þ C2
r ð@U=@YÞ

2�ðn�1Þ=2@U=@Y
n o

=@Y , where the ratio

Cr ¼ ku�=h� is the Carreau number,21,22 which quantifies the devia-
tions from Newtonian behavior. Considering relatively weak non-
Newtonian effects, Cr serves as a small parameter. Thus, focusing on
the limit of C2

r � 1, we employ the regular asymptotic expansion
u ¼ u0 þ C2

r u1 þ OðC4
r Þ, along with the Taylor expansion

ð1þ C2
r f

2Þm ¼ 1þmC2
r f

2 þ OðC4
r Þ. Solving consecutively for the

leading and first orders yields the first-order approximation of the
axial flow velocity, given in its dimensional form by

u � y y � hð Þ
2

1þ
3 1� nð Þk2 _x2p

2h2

" #
Dp
l0l

�
1� nð Þk2y h� yð Þ h� 2yð Þ _xp

4h
Dp
l0l

� �2

� 1� nð Þk2y h� yð Þ h2 � 2hy þ 2y2
� �

16
Dp
l0l

� �3

þ h� yð Þ _xp
h

; (3)

with errors scaling as OðC4
r Þ. Integration of this expression over the

gap’s cross section yields the volumetric flow rate from the front to the
back chamber. An additional expression for this flow rate is calculated
by the time derivative of the upstream chamber’s volume, yielding a
kinematic relation in terms of piston’s motion. Equating these two

FIG. 1. (a)–(c) A schematic layout, a CAD model, and a photograph of an annular
shock-absorber consisting of a shaft and a piston, as well as a cylinder with a cus-
tomized, axially varying inner radius. (d) A photograph of the entire experimental
setup including a free falling weight, which slides along guiding rails from a dictated
initial height, and the shock-absorber decelerating the weight’s motion.
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expressions for the volumetric flow rate provides a third order alge-
braic relation between the pressure difference and the piston’s motion.

Substituting the physical solution of the latter into Eq. (2) yields the
following form of the shock-absorber’s equation of motion:

m€xp � mg � 2ph�1l0l r2piston � r2shaft
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10w
9
þ
5 _x2p
3h2

 !3

þ 25h�4w2 hþ !ð Þ2 _x2p
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2
64

3
75
�1=3

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10w
9
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5 _x2p
3h2

 !3
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�
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3h2

2
664

3
775: (4)

Here, ! ¼ ðr2cylinder � r2shaftÞ=rpiston is a geometric parameter, whereas

w ¼ k�2ð1� nÞ�1 is a fluidic parameter, encapsulating all non-
Newtonian effects. Recalling that h is dependent on xp, Eq. (4) serves
as a basis for an inverse problem, enabling us to find the optimal pro-
file of the axially varying gap.

The analytical results (which are presented and discussed later
on) were validated numerically by a commercial finite-volume soft-
ware (Ansys FluentTM), considering laminar flow that behaves accord-
ing to the Carreau model. The numerical scheme describes the
transnational motion of the system as well as the external forces
applied on it, while due to the instantaneous change of geometry, an
adaptive mesh utilizing 40 000 cells was implemented. Furthermore,
the theoretical results were also verified experimentally, utilizing the
drop-test setup presented in Figs. 1(c) and 1(d). This experimental
setup consists of an annular shock-absorber used to decelerate the
motion of a free-falling mass weighting 105 kg, sliding on guiding rails
from different initial heights. The shock-absorber shown in Figs. 1(b)
and 1(c) comprises a piston whose outer radius and length are 25mm
and 20mm, attached to a shaft whose radius is equal to 14mm. These
move inside a sealed interchangeable cylinder, filled with silicon oil
with the room-temperature density and kinematic viscosity of
970kg=m3 and 1000 cSt. The experimental rig is equipped with lifting
and quick-release mechanisms, allowing us to elevate the dampened
weight to a desired height and to instantly release it. This enables us to
change the impact velocity, which can be estimated from energy conser-
vation of a free falling mass. The pressure at the chambers bounding the
piston was measured with piezoelectric sensors whose rise times are
1ls. The sensor used in the lower chamber is 2300V5 by Dytran
Instruments, Inc., having a full-scale of 34.5MPa, whereas the sensor
used at the upper chamber is 113B24 by PCB Piezotronics, having a
full-scale of 6.9MPa. The motion of the shaft and piston was measured
by the magnetostrictive transducer MAB 400 byWayCon, comprising a
static transducer attached to the cylinder and a moving magnet attached
to the shaft. This transducer has a full-scale linearity of less than 0.02%
for the travel measurements and less than 2% for the velocity measure-
ments. Furthermore, its resolution is less than 0.2mm, where its mini-
mal measurable velocity is 0.1 m/s. All the data were gathered by a data
acquisition system assembled of a National Instruments NI9178 chassis
with NI9215, NI9211, and NI9234 modules, connected to the data
acquisition software “LabView signal express.” The data were sampled
at a rate of 20kHz and stored for later processing.

The first experiment set executed utilized a cylinder with a con-
stant inner radius of 26.2mm to calibrate the parameters of the non-
Newtonian viscosity model. Using this setup, a series of drop experi-
ments were conducted where the mass was released from various
heights, yielding different initial impact velocities. The pressure-
velocity relations achieved in these experiments were utilized to cali-
brate the different parameters through the asymptotic relation, which
led to Eq. (4). The latter provided the following values:
k ¼ 3� 10�5; n ¼ 0:4.

Figure 2 presents the relation between the pressure difference
among the bounding chambers and the Carreau number which is line-
arly dependent on the piston’s velocity, as measured in four drop
experiments having initial impact velocities of 1.54, 1.87, 2.8, and
3.16 m/s. These are presented only along the steady period, after the sys-
tem finished accelerating due to the initial impact, and before the strong
deceleration caused when the piston approached its maximal range of
motion. Furthermore, the figure also displays the corresponding values
achieved numerically from two-dimensional axisymmetric transient
finite-volume simulations carried out in Ansys Fluent. The above-
mentioned simulations describe the motion of the piston and the resul-
tant flow field, considering the Carreau model with the empirically
obtained parameters. For model verification, the pressure-Carreau num-
ber relations according to the approximated non-Newtonian model and

FIG. 2. Experimental, numerically simulated, and analytical results describing the
relation between the Carreau number and the pressure difference among the two
chambers. The experimental results show the average values alongside their enve-
lope of one standard deviation. Furthermore, the analytical results are computed
based on the asymptotic expression that led to Eq. (4) and a Newtonian model that
disregard shear-thinning effects.
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its Newtonian form where Cr¼ 0 are also presented and compared to
the numerical and experimental results. Figure 2 shows that there are
significant deviations between the Newtonian model that predicts a lin-
ear relation between the velocity and the resisting force, and the Carreau
model that considers shear-thinning, thus forecasting lower resistance at
higher velocities. This confirms that the non-Newtonian effects are
indeed substantial although the examined Carreau numbers are small.
Furthermore, there is an overall good agreement between the experi-
mental and theoretical results achieved from the non-Newtonian model.
This correlation agrees well even at relatively high Carreau numbers,
outside of the expected validity region of the asymptotic approximation.
Finally, the good agreement between the model and the numerical
results implies that the assumptions made in the asymptotic analysis and
the assumption that the flow is fully developed throughout the motion
are indeed valid.

To shed light on the overall dynamics of the investigated system,
Fig. 3 shows the four dynamic responses achieved in the experiments
discussed above, where the initial impact velocities are 1.54, 1.87, 2.8,
and 3.16 m/s, and all other parameters are defined above. These are
displayed alongside the corresponding theoretical results obtained
from our model given by Eq. (4). Figure 3 shows that in all cases, the
shock-absorber did not manage to bring the system to rest before the
piston reached the flange, sealing the lower part of the cylinder.
Nevertheless, the dynamic model shows a very good correlation along
the period of steady motion, supporting the validity of the model and
its underlying assumptions.

Since the simplified model shows a good correlation with the
experimental observations, it was utilized to design an optimal axially
varying profile of the cylinder’s inner radius, providing superior
impact mitigation. Optimal damping is given for constant decelera-
tion, leading to a linearly decreasing velocity given by _xpðtÞ
¼ _xpð0Þ½1� _xpð0Þt=2xend�, where _xpð0Þ is the initial velocity and xend
is the desired damping range. The wanted constant deceleration was
calculated from the derivative of this relation, using a predicted impact
velocity of approximately _xpð0Þ ¼ 3.07 m/s and a designated damping
range of about xend ¼ 148.6mm, bringing the system to rest with a
slight tolerance from the maximal stroke of 160mm. The latter was
followed by computations of the gap, keeping the deceleration con-
stant at every lower velocity, utilizing Eq. (4). Finally, the axial position
corresponding to each velocity was computed by integrating the above
linear expression, resulting in the axially varying gap presented in

Fig. 4 by the solid black curve. Here, the displayed values represent
the nominal instantaneous gap, taken at the median axial position
of the piston. As seen from this figure, the gap begins at about 1mm
and decreases gradually, slowing down the Carreau number
reduction, what according to Fig. 2 increases the resisting forces
compared to a uniform profile. This trend proceeds up until a sig-
nificant drop near the end of the travel, which violates the assump-
tion claiming that the gap can be approximated as instantaneously
uniform. Thus, the above-mentioned optimal profile was truncated
and was kept at a constant value near the end of the travel; see the
dashed curve in Fig. 4.

Figure 4 shows the measured dynamic response achieved in an
additional drop test that was conducted using the optimized configu-
ration, where the initial impact velocity was approximately 3.18 m/s.
Additionally, this figure shows the corresponding theoretical response
obtained by numerically solving Eq. (4). Figure 4 shows very good
agreement between the experiments and the theory, where the velocity
of the system indeed decreased linearly before the truncation of the
profile, and thus the optimized configuration managed to keep the
pressure difference constant. Furthermore, it can be seen that after
the truncation, the shock-absorber becomes less efficient as the veloc-
ity reduction became slower. This non-optimal behavior occurs since
after the truncation, the uniform profile does not compensate on the
Carreau number reduction, which leads to lower resisting forces.
Finally, it should be noted that the theoretical computations were ter-
minated once the piston reached its limit of 160mm.

To summarize, we have presented an analytical approximation of
a high shear-rate non-Newtonian flow within a fluidic shock-absorber,
based on the Carreau viscosity model, considering small Carreau num-
bers. The latter resulted in a simplified model, enabling us to predict
the behavior of such a mechanism and to optimize its performance.
The suggested model was validated by comparison with finite-volume
computations and with data from drop-test experiments, utilizing a
simple shock-absorber having a constant gap. The experimental and
theoretical results show that even in low Carreau numbers, non-
Newtonian effects are significant. Thus, in order to achieve tailored
damping rates, it is crucial to consider these effects. Indeed, we have
leveraged the proposed model for the design of a shock-absorber with
an optimal profile. Comparison between experimental and theoretical
results of the optimized configuration showed both excellent agree-
ment and near optimal behavior. The ability to accurately modify the
velocity profile of shock-absorbers can be beneficial for diverse

FIG. 4. Comparison between the experimental and theoretical dynamic responses
of the optimized system, alongside the instantaneous optimal nominal profile, and
its truncated form, which was implemented in practice.

FIG. 3. Comparison between the experimental and theoretical dynamic responses
of the system while utilizing a cylinder having a uniform inner profile. These are
given in terms of piston’s velocity.
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applications including vibration mitigation in vehicles and high-rise
buildings.

We thank Dr. Evgeniy Boyko for the discussions regarding this
manuscript.
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