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Abstract—Soft robotics is an emerging bioinspired concept of
actuation, with promising applications for robotic locomotion and
manipulation. Focusing on actuation by pressurized embedded
fluidic networks, existing works examine quasi-static locomotion
by inviscid fluids. This paper presents analytic formulation and
closed-form solutions of an elastic actuator with pressurized flu-
idic networks, while accounting for the effects of solid inertia and
elasticity, as well as fluid viscosity. This allows modeling the sys-
tem’s step response and frequency response as well as suggesting
mode elimination and isolation techniques. The theoretical results
describing the viscous–elastic–inertial dynamics of the actuator are
illustrated by experiments. The approach presented in this paper
may pave the way for the design and implementation of soft robotic
legged locomotion that exploits dynamic effects.

Index Terms—Fluid flow, robot motion, soft robotics, system
dynamics.

I. INTRODUCTION

SOFT robotics is a bioinspired field of study that introduces
a new concept of robotic design with high compliance.

Though there is no clear boundary to the definition of a soft
robot, continuous actuation and deformation, rather than a con-
ventional chain of rigid links with discrete actuation at the joints,
is often described as a key component [1]–[3]. Soft robots have
advantages in negotiating unstructured environments, adapting
to complex terrain and interacting with humans and delicate
objects, and show promise for medical applications.
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The actuation of an elastic continuous structure involves
increased kinematic and dynamic complexity [4]. The main
approaches include dielectric elastomeric actuators [5], which
deform the soft body by electrostatic forces; shape memory
alloy [6], [7], which strain under heating; tendons manipulating
rigid fixtures, from hard continuum elephant trunk [8] to a
soft octopus-inspired arm [9]; pneumatic artificial muscle
actuators, also known as McKibben muscle [10], which is
often used to manipulate rigid structures [11]; and embedded
fluidic network (EFN) (often referred to as fluidic elastomer
actuators). The latter, which is the focus of this paper, consists
of a fluid-filled network of cavities, embedded into the soft
body. Fluid pressurization creates inflation of the embedded
cavities, which, combined with asymmetry, creates a deflection
of the elastic structure in a desired way.

This concept was used by many researchers for either grasp-
ing and manipulation [12], [13], actuation of rigid parts to create
hybrid (soft–rigid) walking robots [14], [15], creating locomo-
tion in passive elastic structures [16], or completely soft robots
capable of walking (or swimming) locomotion [17]–[19]. All of
the aforementioned examples are pneumatically actuated (hence
often called Pneu-Nets) and require a tether to a fixed source of
compressed air. The untethered versions either consist of more
rigid parts [20], have significantly larger dimension [21], or rely
on an on-board chemical reaction to generate pressure [22],
[23]. A notable exception is [24], which is powered hydrauli-
cally by a closed circulation of pressurized liquid in the EFN,
resulting in untethered function without significant change of
the mechanical design.

While few works analyze the mechanics of an EFN-based
actuator [22], [25] and few other suggest kinematic models for
control [12], [14], [26], [27], the soft robotics field is dom-
inated by either finite elements or empirical modeling, or a
straight-forward experimental approach, achieving quasi-static
locomotion. To the best of our knowledge, the works presented
in [28] and [29] are the first to propose an analytical model
for both the pressure field in a slender fluidic channel and the
actuator’s dynamic response. These works presented a general
formulation, yet analyzed solutions for specific limiting cases
with either negligible viscosity of the fluid, or negligible inertial
effect of the elastic beam.

The goal of this paper is to complete previous studies [28],
[29] by introducing an analytical general systematic solution
scheme for an elastic actuator with a slender EFN channel
that accounts for the coupled effects of the beam’s inertia and
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Fig. 1. Elastic beam with an EFN illustration and model.

elasticity with the fluid’s viscosity. The results are confirmed by
numerical analysis and compered to preliminary experimental
results (see the supplementary file).

II. PROBLEM FORMULATION

In this section, we introduce the proposed configuration and
the governing equations, as a brief review of the work presented
in [28] and [29]. We consider the dynamics of a rectangular
elastic beam (height h, width w, and length L) with a slen-
der serpentine channel network embedded at an offset from the
beam’s neutral plane (see Fig. 1). The channel is considered to
consist mostly of segments perpendicular to the longitudinal di-
rection of the beamx, and distributed rather densely such that the
segments parallel to x are insignificant. The Young’s modulus,
mass per unit length, cross-sectional area, and second moment
of area of the beam are E, ρ, A, and I , respectively, while the
pressure within the fluidic network is denoted as p(x, t).

In Section II-A, the pressure field is assumed to be known and
the governing equations of the elastic domain are introduced.
The pressure field is later determined by the fluidic domain
equations, introduced in Section II-B.

A. Elastic Domain

Assuming small deformations, the deflection of the beam
in the z-direction, d, is composed of de , the beam dynamic
response due to external forces, and dp , the deflection due to the
pressurized channel network as

d = de + dp . (1)

The EFN causes local strain in a field at an offset from the
neutral plane; hence, dp can be considered as a kinematic slope
constraint, which does not participate in the elastic term of the
beam. However, the inertia and damping depend on the absolute
displacement d. Such approach is often used in similar analysis
in the field of poroelasticity [30], giving an Euler–Bernoulli

equation of the form

EI
∂4

∂x4 de + c
∂

∂t
(de + dp) + ρA

∂2

∂t2
(de + dp) = w(x, t)

(2)
where w(x, t) is the external distributed force acting on the
actuator, and c is the proportional damping, estimated from
experiments. The assumption of small deformations is widely
used for the linear approximation, and even when slightly vi-
olated gives important insights on the physics of the problem.
Moreover, the experimental results introduced later are in good
agreement for the range p/E ≈ 0.1.

The change in the beam’s slope due to a single pressurized
channel is denoted as θ [see Fig. 1(c)]. For a given channel den-
sity function ϕ(x), defined as the number of channel segments
per unit length, the distributed change in the slope due to the
EFN ϕ(x)θ is proportional to the second derivative of the de-
flection dp . The change in the beam’s slope for a unit normalized
pressure is denoted by λ, which is constant for each actuator,
and is found via static calibration experiments. This relates the
beam deflection to the pressure in the EFN by

∂2dp
∂x2 = −ϕ(x)θ ≈ −ϕ(x)λ

p(x, t)
E

. (3)

This relation has been shown to be accurate for p/E < 0.1 in
[28], but provides fair approximation for a larger range.

While the current analysis focuses on slender channel, a sim-
ilar approach may be applied for configurations with large blad-
ders. The coefficient λ will incorporate the difference.

From (1) and (3), the beam equation (2) is rewritten in terms
of de as

EI
∂4de
∂x4 + c

∂de
∂t

+ ρA
∂2de
∂t2

= w(x, t)

+
λ

E

(
ρA

∂2

∂t2
+ c

∂

∂t

)∫ x

0

∫ η

0
ϕ(ξ)p(ξ, t)dξ dη. (4)

Considering a clamped-free configuration with no external
forces but the EFN gives the homogeneous boundary conditions

de(0, t) =
∂de
∂x

(0, t) = 0 (5a)

and

EI
∂2de
∂x2 (L, t) = EI

∂3de
∂x3 (L, t) = 0. (5b)

Introducing nondimensional parameters X = x/L, De =
de/h, P = p/E, and T = Ωt, where Ω =

√
EI/ρAL4 is the

characteristic frequency, the elastic beam governing equation
(4) becomes

∂4De

∂X4 + 2ζ
∂De

∂T
+
∂2De

∂T 2 = W (X,T ) +
λϕ∗L2

h

×
(
∂2

∂T 2 + 2ζ
∂

∂T

) ∫ X

0

∫ η

0
Φ(ξ)P (ξ, T )dξ dη � F (X,T )

(6)

for Φ = ϕ/ϕ∗ normalized channel density, where ϕ∗ = l/lf L
is the characteristic channel density, l is the total fluidic chan-
nel’s length, lf is the length of a single channel segment, and
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ζ = c/2ΩρA is the nondimensional damping ratio. The nondi-
mensional external load W = wL4/EIh can be either dis-
tributed along the actuator, or a localized force of the form
F0(T )δ(X −X0). The overall excitation of the actuator, which
includes the external forces and the contribution of the EFN, is
denoted by F (X,T ).

B. Fluidic Domain

In order to determine the pressure distribution function p(x, t)
in (4), we consider the incompressible creeping Newtonian flow
within the fluidic network in the channel’s spatial coordinates
(xf , yf , zf ), where xf is in the streamwise direction. The fluid
is governed by the Stokes equations

μ∇2u = ∇p(xf , t) (7)

and conservation of mass

∇ · u = 0 (8)

where u = (u, v, w) is the velocity field in the corresponding
coordinates and μ is the fluid viscosity.

Assuming a rectangular channel with characteristic cross-
sectional dimension hf , cross-sectional area a, and total length
l, we introduce the normalized channel-spatial coordinates
(Xf , Yf , Zf ) = (xf /l, yf /hf , zf /hf ). It is noted that while the
excitation of the elastic beam, defined in (6), is of the form
P (X,T ), the pressure field is defined in the fluid coordinates
as P (Xf , Tf ). Therefore, a transformation from the channel-
spatial coordinate Xf to the beam longitudinal coordinate X is
introduced as

Xf ≈
∫ X

0
Φ(ξ)dξ +

L

l
X (9)

and the time scaling transformation is calculated by

T/Tf � τ. (10)

For a slender channel, the channel’s total length l is signif-
icantly greater than the cross-sectional dimension hf , and the
characteristic flow velocity in the streamwise direction u∗ is
significantly greater than those perpendicular to the channel
walls v∗, w∗, giving the small parameter ε = hf /l ∼ v∗/u∗ ∼
w∗/u∗. Considering that, nondimensional parameters are intro-
duced as follows: A = a/hf

2 , Tf = t/t∗f , U = (U, V,W ) =
(u/u∗, v/v∗, w/w∗), and Q = q/hf

2u∗, where q is the flow
rate and u∗ = Eε2 l/μ. The leading order of (7) is

∂P

∂Xf
∼ ∂2U

∂Y 2
f

+
∂2U

∂Z2
f

. (11)

From (11), it is noticed that the normalized flow rate Q can be
represented by

Q(Xf , Tf ) = −Q1
∂P

∂Xf
(Xf , Tf ) (12)

where Q1 is a constant determined by the channel’s geometry,
via solving (11) for a unit pressure gradient ∂P/∂Xf = −1.
For a rectangular cross section of the normalized length 1, this
gives Q1 ≈ 0.035.

Assuming uniform cross-sectional area at rest and requiring
small displacements, the cross section can be approximated as
A(Xf , Tf ) ≈ 1 +AP P (Xf , Tf ). The coefficient AP can be
measured by calibration experiments. The leading order of the
mass conservation equation (8) in its integral form, while con-
sidering (12), gives the flux continuity equation

− ∂2P

∂X2
f

+
∂P

∂Tf
= 0 (13)

which defines the characteristic time as t∗f = μAP /Q1Eε
2 .

Considering the fact that the deflection will change the effec-
tive pressure in the channel, the problem will become two-way
coupled. It can be shown [29] that since in our work the channel
is slender, the change in the pressure due to loading is negligible
compared to characteristic inlet pressures. This effect should be
considered in the case of large bladders.

III. ANALYTICAL SOLUTION SCHEME

This section introduces a general analytical solution scheme
for the presented governing equations (6), (13) of the corre-
sponding domains.

A. Elastic Domain

The solution to the dynamic beam problem (6) excited by
the EFN is represented by an infinite series of the mode-shape
functions Ψn (X) and time-varying magnitudes [31], [32], i.e.,

De(X,T ) =
∞∑
n=1

An (T )Ψn (X). (14)

The mode shapes are determined from the eigenfunction prob-
lem corresponding to the homogeneous beam equation (6) (for
F (X,T ) = 0). For the clamped-free boundary conditions (5),
this gives

Ψn (X) = cosh(αnX) − cos(αnX)

+ Cn
(
sin(αnX) − sinh(αnX)

)
(15)

where Cn = (cosαn + coshαn )/(sinαn + sinhαn ) and αn
are the solutions of the eigenvalue transcendental equation
coshαn cosαn + 1 = 0.

Putting (14) into (6), multiplying by each of the modes and
integrating over the beam length, while considering the modes’
orthogonality property, gives a series of ODEs in each of the
magnitudes An (T ) as

Än (T ) + 2ζȦn (T ) + αn
4An (T )

=
∫ 1

0
Ψn (X)F (X,T )dX � Fn (T ) (16)

where the natural frequencies are ωn = αn
2 and ζ < 1. Solving

these nonhomogeneous linear ODEs gives the series solution
for De of the form (14).

Finally, the total deflection D = De +Dp is completed by
calculating Dp from (3) as

Dp = −λϕ∗L2

h

∫ X

0

∫ η

0
Φ(ξ)P (ξ, T )dξ dη. (17)
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Hence, the second time derivative of the pressure field
∂2P/∂T 2 excites the beam dynamic response De , while the
“static” pressure P determines Dp , which can be considered
as a quasi-static response to the kinematic constraint caused by
the EFN.

B. Fluidic Domain

The excitation F (X,T ), defined in (6), is a function of the
pressure field P (X,T ), which is the solution of the diffusion
equation (13) for known boundary conditions. Given a known
inlet pressure Pin(Tf ) at one end of the channel, say from a
pressure controller, while the other edge is sealed, so there is
no flow and thus no pressure gradient. This gives the boundary
conditions

P (0, Tf ) = Pin(Tf ) (18a)

and

∂P

∂Xf
(1, Tf ) = 0. (18b)

A correction function W (Xf , Tf ) = P (Xf , Tf ) − Pin(Tf )
is suggested in order to zero the boundary conditions, and (13)
is reformulated in terms of W . Next, similarly to the solution
scheme for the elastic domain, it is assumed that the nonhomo-
geneous solution is an infinite series of mode shapes ψm (Xf )
multiplied by the excitation-related time-varying magnitudes.
Considering is the correction function, this gives

P (Xf , Tf ) = Pin +
∑
m

Bm (Tf )ψm (Xf ). (19)

The pressure field mode shapes are obtained from the corre-
sponding homogeneous problem as

ψm = sin(βmXf ) (20)

for βm = π(2m− 1)/2. Putting (19) into (13), multiplying by
each mode and integrating over the channel length gives a first-
order ODE in each of the time-varying magnitudes

Ḃm (Tf ) + βm
2Bm (Tf ) = − 2

βm

∂Pin

∂Tf
(Tf ). (21)

Defining the inlet as a gauge pressure, such that P (Xf , 0) = 0,
solving (21) gives

Bm (Tf ) = − 2
βm

exp
(−βm 2Tf

)∫ Tf

0
exp

(
βm

2ξ
) ∂Pin

∂Tf
(ξ)dξ.

(22)

Finally, substituting the modal magnitudes from (22) to (19)
gives the general solution of the pressure field.

IV. CASE STUDIES

This section studies several cases of interest in order to
demonstrate the effects of viscosity, elasticity, and inertia, and
their interaction in soft actuators with EFN, without external
loading W (X,T ) = 0.

A. Effect of Viscosity—Step Inlet Pressure

To study how the viscosity of the fluid in the EFN affects
the dynamic response of the beam, a step (Heaviside) pressure
inlet of magnitude P̄ is introduced, i.e., Pin(Tf ) = P̄ H(Tf ).
In this and the following sections, we examine uniform channel
distribution, Φ(X) = Φ̄, hence the coordinates transformation
in (9) is linear and can be denoted by a constant as Xf =
(Φ̄ + L/l)X � CΦX .

From (19) and (22), the pressure field in the beam coordinates
is

P (X,T ) = P̄H

(
T

τ

)[
1 −

∞∑
m=1

2
βm

e−T /τm sin (βmCΦX)

]

(23)

where τm = τ/βm
2 is the mth mode viscosity-dependent char-

acteristic time of the pressure field propagation.
The dynamic response De is found by the projection of the

excitation on each of the modes, giving the modal excitation
Fn (T ) from (16). Denoting the constants from the projection
integrals for the nth mode as

Gn =
1
2

∫ 1

0
Ψn (X)X2dX (24a)

and

Jn,m =
2

βm
2CΦ

∫ 1

0
Ψn (X)

(
sin(βmCΦX)

βmCΦ
−X

)
dX

(24b)
the time-dependent modal magnitudes are obtained from the
solution of the linear ODE in (16) as

An (T ) =
λϕ∗Φ̄L2

h
P̄

×
{
Gn e

−ζT
[
cos(ωndT ) +

ζ

ωnd
sin(ωndT )

]

+
∞∑

m=1

Jn,m
τm 2αn 4 − 2τm ζ + 1

[
τmαn

4e−ζT
(
τm cos(ωndT )

+
τm ζ − 1
ωnd

sin(ωndT )
)

+ (1 − 2τm ζ)e−T /τm
]}

, (25)

where ωnd =
√
αn 4 − ζ2 .

The quasi-static response Dp is found from substituting (23)
into (17) as

Dp(X,T ) = −λϕ∗Φ̄L2

h
P̄

{
X2

2
+

∞∑
m=1

2
βm

2CΦ

×
[
sin(βmCΦX)

βmCΦ
−X

]
exp

(
− T

τm

)}
(26)

giving the total beam deflection

D(X,T ) =
∞∑
n=1

An (T )Ψn (X) +Dp(X,T ). (27)
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TABLE I
SUMMARY OF EXPERIMENTAL SETUP PARAMETERS’ VALUES

Parameter Notation Value Units

Young modulus E 2 MPa
Beam density ρ 1100 kg/m3

Damping ratio ζ 0.11
Beam height h 12 mm
Beam width w 90 mm
Beam length L 200 mm
Channel total length l 3250 mm
Channel height hf 2 mm
Channel cross-sectional area change
for unit pressure

Ap 9.7

Change in slope for unit pressure λ 0.15
Channel density ϕ 25/L 1/mm
Air density order μair 10−5 Pa·s
Water density order μwater 10−3 Pa·s
Glycerol density order μglycero l 100 Pa·s

Studying expression (26) shows that the quasi-static deforma-
tionDp is similar in the time domain to a first-order system with
characteristic time τ , where an exponential time delay accounts
for the pressure propagation. From the solution of (16), the
dynamic deformation’s De time-dependent magnitudes An (T )
consist of exponentially decaying oscillating terms, which are
similar to an impulse response of an underdamped second-order
linear system.

The nondimensional time parameter τ represents the ratio
between the fluidic viscous-elastic time scale and the beam’s
inertial-elastic characteristic time. We now turn to examine the
limiting cases of τ . The pressure field of a fluid with negligi-
ble viscous effect propagates rapidly compared to the beam’s
characteristic response time (τ � 1), hence the exponential de-
lay in (23) vanishes. The overall response will resemble a step
response of the second-order underdamped linear system as

D(X,T ) =
λϕ∗Φ̄L2

h
P̄

{
− X2

2
+

∞∑
n=1

Gn e
−ζT

×
[
cos(ωndT ) − ζ

ωnd
sin(ωndT )

]
Ψn (X)

}
. (28)

On the other hand, for viscous limit of τ � 1, it can be shown
that the dynamic beam deflection De vanishes, thus making the
total deflection determined only by the constraint from the EFN,
i.e., D = Dp from (26). In this case, the beam is considered to
be in constant quasi-static equilibrium, and its response resem-
bles an exponential rise without oscillations as of a first-order
linear system. Some interesting cases of τ � 1 are suggested
in [29].

To study the interaction of the fluid viscosity and the beam
inertial effects, fluids of various viscosities are considered. For
concreteness, we consider the parameters of our experimen-
tal setup, summarized in Table I. These parameters give the
characteristic time ratios as follows: for air τ ≈ 10−4 , for water
τ ≈ 10−2 , and for glycerol τ ≈ 100 . The step pressure inlet am-
plitude is 1 [bar] for all cases. The combined viscous-dynamic
response of these fluids at the free end X = 1 is presented in
Fig. 2(a)–(c). The analytical results (in solid gray line) are in

Fig. 2. Step response for different fluids at X = 1. Analytical step solution
(solid gray), numerical “smoothed” inlet solution (dashed blue), and experi-
mental results (dotted green). (a) Air-filled EFN actuator. (b) Water-filled EFN
actuator. (c) Glycerol-filled EFN actuator.

excellent agreement with the numerical finite differences simu-
lation (described in the Appendix), with maximal error of only
1.45% of the steady-state deformation (therefore the numerical
results are not plotted in Fig. 2). The comparison with the exper-
imental results is discussed in the next section. As expected, the
figure shows oscillations superimposed with an exponential rise
to steady state. The first and even second natural frequencies
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are clearly recognized for air (from the faster oscillations over
the basic harmonic) but become less significant as the viscos-
ity increases. This phenomenon is explained by the frequency
response analyses in the next section.

B. Frequency Response

To further study the dynamical effects and their coupling
with the fluid’s viscosity, this section analyzes the frequency
response function (FRF) of the beam under a harmonic pressure
inlet in different fluids, i.e., Pin = P̄ exp (i ωt∗f Tf ), where ω is
the input frequency. This gives the expression for the pressure
in steady state as

P (X,T )

= P̄

[
1 −

∞∑
m=1

2
βm

τm
2ν2 + τmν i

τm 2ν2 + 1
sin (βmCΦX)

]
e(i νT )

(29)

where ν = ω/Ω is the normalized excitation frequency.
Since the beam’s dynamics is linear and asymptotically sta-

ble, its response reaches steady-state harmonic with the same
frequency as the input, but with different magnitude and phase,
i.e., An = Ān exp (i ωt∗f Tf ), where Ān ∈ C. Given that, the
FRF is obtained by analyses similarly to the previous section as

Ān

P̄
(ν) =

λϕ∗Φ̄L2

h

[
Gn +

∞∑
m=1

Jn,m
τm

2ν2 + τmν i

τm 2ν2 + 1

]

× −ν2 + 2ζν i
αn 4 − ν2 + 2ζν i

. (30)

The right-most term in this expression is a typical FRF of a
underdamped second-order system with an acceleration input,
and will result in resonance peaks. It is, therefore, clear that
the resonance frequencies are not affected by the fluid’s viscos-
ity. On the other hand, the viscosity-dependent term (under the
summation) acts as a low-pass filter (LPF) and attenuates the
frequency response from a cutoff frequency which drops as the
viscosity rises. The static deflection Dp is found from (17) by
integrating the pressure from (29) as

Dp

P̄
(ν,X) = −λϕ∗Φ̄L2

h

{
X2

2
+

∞∑
m=1

τm
2ν2 + τmν i

τm 2ν2 + 1

× 2
βm

2CΦ

[
sin (βmCΦX)

βmCΦ
−X

]}
. (31)

This expression also shows a behavior of an LPF, but without
the resonance terms, as expected. The amplitude of FRF of
the total deflection D = De +Dp at the free end X = 1 is
shown in Fig. 3. We observe that the resonance frequencies are
unchanged by the fluid, as expected, but the antiresonances are
somewhat smoothed. The whole FRF becomes more attenuated
as the viscosity increases, which explains the attenuation of the
oscillations in the step responses in Section IV-A.

Fig. 3. Amplitude of FRF for liquids with various viscosities at X = 1. The
analytical values of the resonance frequencies are marked by a vertical dashed
line.

C. Inviscid Flow—Mode Elimination and Isolation

We now study the inviscid flow limit, with a general dis-
tribution of channels Φ = Φ(X). We also emphasize that Φ
may be positive or negative, representing that the channels are
distributed along either side of the neutral plane. As previously
discussed, in the inviscid limit of τ � 1, the pressure field prop-
agates much faster than the beam’s inertial-elastic response time.
The beam in fact behaves as if responding to a spatially uniform
time-varying pressure, i.e., P (X,T ) = Pin(T ). In this case, the
beam’s dynamic deflection De modal excitation becomes

Fn (T ) =
d2Pin(T )
dT 2

∫ 1

0

[
Ψn (X)

∫ X

0

∫ η

0
Φ(ξ)dξ dη

]
dX.

(32)
Therefore, if the second integral of the channel density function
Φ(X) is orthogonal to a certain mode shape Ψn (X), this mode
is not excited for any inlet pressure. For example, when the first
mode is eliminated this way, the beam’s vibration is dominated
by higher order mode shapes and natural frequencies. Moreover,
choosing channel density of the form Φ(X) = Ψ′′

k (X) isolates
only the kth mode while all other modes do not appear in the
response, since they are orthogonal to the excitation distribution.
This is valid for any input at any frequency. Fig. 4(a) shows
time snapshots of the beam’s spatial response to an impulse
pressure inlet (approximated by a bump function), obtained by
a numerical simulation, where the channel distribution isolates
the second mode Φ(X) = Ψ′′

2(X). As expected, the response
has the shape and natural frequency of the second mode only,
unlike the response of a beam with uniform channel distribution,
which has dominant first-mode shape and frequency (with some
higher modes and harmonics slightly observed). The FRF of a
beam with second mode isolation in Fig. 4(b) shows that the
other modes are attenuated even when the beam is excited at
their natural frequency. The slight resonance peak observed at
the first natural frequency, which is a result of the numerical
discretization, implies that practical applications are limited,
since in practice the channel distribution Φ(X) is implemented
as a discrete function.
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Fig. 4. Numerical demonstration of mode isolation. (a) Time snapshots of
the beams response to impulse from finite differences. (b) FRF of a beam
with second mode isolation (dashed blue line) compared to uniform channel
distribution (solid black line) from finite differences.

V. EXPERIMENTS

The purpose of this section is to experimentally demonstrate
the concepts introduced and analyzed in this paper. An elastic
beam with EFN has been manufactured from a polymeric ma-
terial (Econ 60), having the properties mentioned in Table I.
The transverse deflection direction Z has been positioned per-
pendicular to gravity in order to eliminate additional forces.
Elveflow OB1 MK3 pressure controller has been used in order
to impose the prescribed pressure inlet function. Since this con-
troller can only pressurize air, when working with other fluids, a
pressurized fluid reservoir has been installed, as shown in Fig. 5.
The beam deflection has been measured by Micro-Epsilon scan-
CONTROL 2650-100 laser profile sensor at sampling frequency
of 30 [Hz]. The laser has been positioned such that it measures
a range of 0.4 ≤ X ≤ 1 of the beam’s length with spacing of
∼ 0.2 [mm] and accuracy of 12 [μm]. The measured data have
been fitted at each time sample using least squares [33], in order
to eliminate noise from various factors which affect the laser
reflectiveness, such as the beam’s surface roughness.

To test the step inlet analysis in Section IV-A, a reverse step
experiment has been conducted (see the supplementary file). In
this experiment, in order to eliminate the effect of the controller’s

Fig. 5. Experimental setup—(I) Elveflow pressure controller, (II) fluid reser-
voir, (III) cantilevered EFN beam, (IV) scanCONTROL laser profile sensor.

response time, the fluid has been pressurized to 1 [bar] until
the beam deflection reached steady state, and then manually
rapidly released. The measured dynamic response of the beam
free end for various fluids is shown in Fig. 2 in dotted green
line. Qualitative comparison to the solutions obtained from the
analytical model (solid gray line) shows similar behavior of
decaying oscillations superimposed on an exponential rise to
steady state. On the other hand, it is obvious that the analytical
Heaviside step pressure inlet cannot be implemented in practice.
We, hence, also introduce a solution to a “smoothed” inlet of
the form Pin = 1 − exp (−T/δ), where δ is a small parameter.
The resulting response (in dashed blue line), obtained from
finite differences simulation, shows excellent agreement with
the experiments. Same result can be found from the analytical
model, but the expressions are cumbersome and not shown.
In all the cases, the linear damping model was found to be
slightly inaccurate, which explains the differences in the decay
form and the absence of the second oscillatory mode in the
experiments, though was theoretically expected. Studies of the
viscoelastic behavior of polymers [34] suggest more complex
modeling of the damping and stiffness coefficients is required
in order to eliminate these errors, which is beyond the scope
of this paper. Discrete Fourier transform analysis [35] of the
reverse step responses show that the first natural frequency for all
fluids has maximal error of only 8% compared to the analytical
estimation, as expected from the FRF analyses. The error of the
steady-state amplitude is about 13%, which is explained by the
nonlinear features of the material which are not modeled.

The FRF analysis in Section IV-B is tested by the stepped sine
method—that is, by introducing a sine inlet pressure at discrete
frequencies and measuring the output amplitude at steady state.
The upper limit of the controller is ∼3 [Hz], showing the first
resonance frequency, as presented in Fig. 6 for water-filled EFN
beam, normalized by the peak amplitude. The resonance in the
experiments is reached with only 3% error in the frequency and
17.7% error in the amplitude.

The experimental results show good qualitative and quanti-
tative agreement with the theoretical results in Section IV. In
particular, the effects of fluid viscosity and the first resonance
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Fig. 6. Experimental demonstration of water FRF—stepped sine experiment
(crosses) versus analytical function (solid line) in percentage from peak
amplitude.

frequency are clearly captured. It is also obvious that the mate-
rial exhibits some nonlinear viscoelastic behavior which should
be incorporated into the damping.

VI. CONCLUDING DISCUSSION

This paper has formulated the viscous–elastic–inertial prob-
lem governing the dynamics of an elastic beam with a slender
EFM channel. A closed-form solution has been presented by
combining tools from the fields of fluid mechanics and dynamic
vibrations. The system’s step-response and FRF were proposed
theoretically, verified numerically, and demonstrated by exper-
iments. Mode elimination and isolation techniques were theo-
retically proposed.

A major insight throughout this study is that the pressurized
fluid in the channels, embedded into the elastic structure, simply
acts as a distributed bending moment, leaving the beam’s dy-
namical properties (such as resonance frequencies) unchanged.
This observation allows for application of the presented analyt-
ical approach for similar cases of fluid-structure interaction.

Even though hydraulically powered EFN actuators have
shown better untethered performance, researchers tend to avoid
this actuation method due to viscous effects of liquids. We hope
that this study sheds some light on the viscous–elastic–inertial
behavior of actuators for future design and control studies.

We now briefly discuss some limitations of our theoretical
analysis and suggest possible directions for future extensions of
the research. First, the proposed Euler–Bernoulli linear model
accounts for small deformations, which is only relevant for some
soft robotic configurations, especially quasi-static locomotion as
[12], [17]. For configurations that require extremely large deflec-
tions, nonlinear elasticity models must be employed. The study
of such complicated models, as Elastica [25] and Cosserat [36],
is only possible by numerical analysis. Yet for moderate dis-
placements, our experiments have shown reasonable agreement.
Moreover, the range of applicability of the current analysis may
be extended by asymptotic expansions for the limit of weak ge-
ometric nonlinearity, while maintaining the analytical insights.

Second, though the analysis for the elastic domain can also
be applied in the case of large bladders (rather than a slender
channel), while the difference is incorporated in the empirical
coefficient λ, some key assumptions for the fluidic domain will
be violated in that case, and a different formulation should be
presented.

Finally, the presented Euler–Bernoulli model can only ac-
count for transverse loading. Extending the model to include
axial loading of the form γn (X,T ) will give

∂4De

∂X4 + γn
∂2De

∂X2 +
∂γn
∂X

∂De

∂X
+ 2ζ

∂De

∂T
+
∂2De

∂T 2

=
λϕ∗L2

h

[ ∫ X

0

∫ η

0
Φ(ξ)

∂2P (ξ, T )
∂T 2 dξ dη

+
∂γm
∂X

∫ X

0
Φ(η)P (η, T )dη + γn Φ P (X,T )

]
. (33)

For the case of a constant normal force γn (X,T ) = γ0 , there
exist well-known analytical solutions, which predict the shift
in natural modes and frequencies and the buckling limit [32].
However, the case of an upright bipedal soft mechanism requires
a complex solution for a general axial force, distributed in X
and time varying. This challenging problem is currently under
investigation.

An extension of the presented model to include interaction
between two (or more) beams with EFN, account for axial forces
and changing boundary conditions due to contact transitions,
is the immediate sequel to the study of soft robotic dynamic
walking with EFN actuators.

APPENDIX

NUMERICAL SCHEME

This section presents a general solution scheme using finite
differences formulation for vibrations of a damped beam with
EFN, expressed by (2). First, this expression is rewritten in
terms of the total deflection d from (3) [instead of de as in (4)],
and transferred to the nondimensional parameters introduced in
Section II, where D = d/h, giving

∂4D

∂X4 + C
∂D

∂T
+
∂2D

∂T 2

= −λϕ∗L2

h

∂2

∂X2

[
Φ(X)P (X,T )

]
� FXX (X,T ) (34)

where C =
√
c2L4/ρAEI , for proportional damping c.

For a known pressure field P (X,T ), the PDE solution can be
approximated over a grid with spacing ΔX and time step ΔT .
Introducing Dn

i as the approximate solution to the deflection D
at T = nΔT andX = iΔX , using central approximation[37],
[38] gives an explicit differences scheme(

1 + C
ΔT
2

)
Dn+1
i = 2Dn

i −
(

1 − C
ΔT
2

)
Dn−1
i

− Δ2(Dn
i+1 − 4Dn

i+1 + 6Dn
i − 4Dn

i−1 +Dn
i−2)

+ ΔT 2FXX (iΔX,nΔT ), (35)
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where Δ = ΔT/ΔX2 , and the truncation error is O(ΔT 2) +
O(ΔX2). Since the pressure field is solved independently, it
does not add to this error. Moreover, though the damping af-
fects the error growth, it does not affect the stability condition,
and hence Von Neumann’s analysis [37], [38] indicates that the
solution is stable provided Δ � 1/2.

The pressure field in (13) is solved by introducing an implicit
scheme, utilizing one-sided approximation. This scheme is un-
conditionally stable, which is more convenient for the solution
of pressure fields of fluids with various viscosities. This results
in a solution of the form

Pn+1 = M−1 (Pn − N) (36)

where for the boundary conditions introduced in (18)

M =

⎡
⎢⎢⎢⎢⎣

2kΔ + 1 −kΔ 0

−kΔ . . .
. . .

. . . −kΔ
0 −kΔ 2kΔ + 1

⎤
⎥⎥⎥⎥⎦

Pn =

⎡
⎢⎣

Pn
1
...

Pn
1/ΔX

⎤
⎥⎦ , N =

⎡
⎢⎢⎢⎣
−kΔPin

(
(n+ 1)ΔT

)
0
...
0

⎤
⎥⎥⎥⎦ . (37)

Here, though the pressure field is denoted by the same grid as
the beam, for simplicity, its solution is actually attained in the
channel-spatial coordinate Xf . A transformation is required, as
described in Section II-B.
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