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Fig. 3. Comparison between analytical and experimental results. Experi-
mental and analytical results for a single transition-region propagation and
the location of the transition region at different time intervals (from 0 to
80 s) and at varying inlet pressure (pin 0 to =10 kPa) (red line, denoting
inlet pressure) are shown (Movie S1).

channel viscous resistance, yielding h̃3(p) = bip + h̃3
i , where, in

this case, bip is neglected compared with the h̃3
i term. By

substituting Eq. 2 into Eq. 1, we get

ai
∂p

∂t
=

h̃3
i

12µ

∂

∂x

(
∂pi
∂x

)
, [3]

where i ∈ [1, 3]. The initial and boundary conditions are
p1(x = 0, t > 0) = f (t), p3(x , 0) = p1(x , 0) = 0, p1(x−s , t) =
p3(x+

s , t) = ps , and p3(x→∞, t) = 0, where ps is the snapping
pressure (and may represent either pup

s or pdown
s ; Fig. 1).

In addition to the above conditions, applying integral mass
conservation on the transition region located at xs , and
limiting the configuration to sufficiently small transition
region, yields the mass-conservation condition at the transition
region

q(x−s )− (a1ps +wh̄1)
∂xs
∂t

= q(x+
s )− (a3ps +wh̄3)

∂xs
∂t

. [4]

Substituting Eq. 2 into Eq. 4 yields

∂p1
∂x

∣∣∣∣
x=x �

s

− h̃3
3

h̃3
1

∂p3
∂x

∣∣∣∣
x=x+

s

=
∂xs
∂t

κ, [5]

which provides an additional condition for obtaining the loca-
tion of the transition region xs(t), and where κ= ps(a3− a1) +
w(h̄3− h̄1). The governing Eq. 3 are similar to one-dimensional
heat transfer problem involving a phase change, known as the
Stefan problem (31, 32). Integration and determining the inte-
gration coefficients by applying boundary and initial conditions
yields the self-similar result of

p1(x , t) = pin +
ps − pin
erf (β)

erf

(
x

√
3a1µ

wh̃3
1

t

)
, [6A]

p3(x , t) =
ps

1− erf

(
β

√
h̃3

1 a3

h̃3
3 a1

)[1− erf

(
x

√
3a3µ

wh̃3
3

t

)]
, [6B]

where xs =β
√

(3a1µ)/(wh̃3
1 )t is the location of the transition

region, and β is a constant still to be determined. To calculate
β, the expressions obtained to the pressure in both regions Eq. 6
are substituted into Eq. 4, yielding the additional relation

ps − pin
erf (β)

e−� 2
+

e
−� 2

~h3
1 a3

~h3
3 a1

1− erf
(
β

h̃3
1 a3

h̃3
3 a1

)√ h̃3
3a3

h̃3
1a1

ps +β
√
π

h̃3
1

12a1µ
k = 0,

[7]

(where κ is defined after Eq. 5). While Eq. 7 is implicit in
β, an approximate explicit solution can be obtained by regular
asymptotic expansions (SI Appendix, section 1)
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Fig. 4. Experimental results of patterning using multiple transition regions
propagation. (A and B) A presents the inlet pressure profiles, and B presents
the corresponding final steady deformation patterns. C presents the evolu-
tion of case a in A. Initially, the channel is at the snapped-up state. Then, we
applied varying inlet pressures between negative- and positive-gauge val-
ues (red line; denoting inlet pressure) to generate moving snap-down and
-up transition regions, which allow patterning of the continuously multi-
stable membrane. After sequencing three transition regions (denoted by
black line), separating four different stability states that are obtained, we
removed pressure actuation, and the membrane pattern remained stable
(t = 133 s) (Movie S1).
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Fig. 5. Transient and static transition-region shapes. A and B present the
moving snap-up and -down transition region, which are inverse of each
other; C and D present the nearly unchanged shapes of the static transition
region.

βasymptotic ≈
√

3a1µ

h̃3
1

(pin − ps), [8]

thus relating the motion of the transition region to the physical
and geometrical parameters of the system. Calculation of β for
the current configuration is presented in SI Appendix, section 2.
As is evident in Fig. 3, a good agreement is observed between the
estimated location of the transition region and the experimental
results.

Above, we analytically analyzed and experimentally demon-
strated the emergence and motion of a single transition region
and showed that when the inlet pressure returns to its nominal
value, the membrane’s shape remains nearly unchanged. Thus,
by sequencing several inlet pressures, any pattern of a snapped-
down and -up regions along the channel can be created. The use
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Fig. 6. Direct fluidic-induced patterning of any segment of a nonuni-
form membrane. Numerical solution of a membrane with spatially varying
snapping pressure value is shown. (A1–A3) Three different inlet pressure
actuations that vary in amplitude (Ain) and duration (∆t). (B1–B3) Pressure
distribution vs. streamwise direction (x) for different times (full lines) along
with snapping pressure distribution along the channel (pup

s ) (denoted by a
dashed black line). Each case of actuation (1–3) snaps directly a different
segment of the membrane (red background). The numerical code used is
included in ref. 33.

of multiple moving transition regions for patterning is presented
in Fig. 4. Fig. 4A presents various inlet pressure profiles, and the
corresponding final patterns are presented in Fig. 4B. Fig. 4C
focuses on the first pressure profile in Fig. 4A (marked by a blue
line) and shows the temporal evolution of the patterning process.
Initially, the channel is entirely at the snapped-up state. Then, we
applied alternating positive- and negative-gauge inlet pressures
(red line in Fig. 4, denoting inlet pressure) to generate moving
snap-down and -up transition regions, thus patterning the equi-
librium state of the continuously multistable membrane. Fig. 4
shows the evolution of the membrane shape and presents the
location of the transition regions vs. time, as well as snapshots
of the membrane shape at different time intervals.

We note that the shape of the transition regions, separating
between the different cross-sectional equilibria states, resembles
a single wrinkle (Fig. 5). Two possible geometric configurations
of this wrinkle were observed and shown to be determined by
the inducing flow field. In addition, some asymmetric wrinkles
were occasionally observed, but were unstable and collapsed
to the symmetric form (Fig. 4; at times 84 < t < 91 [s]). A
snap-down transition region, moving in the streamwise direc-
tion, is presented in Fig. 5A. A snap-up transition region is
presented in Fig. 5B, which is similar to the inverse of the geome-
try presented in Fig. 5A. The transition-region shapes are nearly
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Fig. 7. Experimental results of direct fluidic-induced snapping of differ-
ent regions of a nonuniform membrane. Different inlet signals are used to
directly pattern different regions of a nonuniform membrane. The mem-
brane thickness is spatially varying. At region 0≤ x≤ 200 mm, there are
three layers of elastic membranes, yielding ps = 35 kPa. At region 200≤ x≤
600 mm, there are two layers, yielding ps = 15 kPa. At the remainder of the
membrane 600 < x < 800 mm, there is a single layer, yielding ps = 5 kPa.
A–C present inlet signals with different amplitude and duration (Ain, ∆t).
In A, we apply high amplitude and short duration (40 kPa, 5 s), yielding a
pressure field which snaps up only the three-layer region near the outlet.
In B, we apply medium amplitude and medium duration (30 kPa, 10 s) and
snap up the two-layer region in the middle of the channel. (C) We apply
low amplitude and long duration (10 kPa, 50 s) and snap up the one-layer
region near the outlet. D presents a combination of such signals to create a
rather complex deformation pattern of the membrane. See Movie S2.
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unchanged after the ending of the fluidic driven actuation, as
presented in Fig. 5 C and D.

So far, we examined only membranes with constant properties.
Arbitrary patterning of such membranes required sequencing of
several transition regions and waiting for all transition regions to
reach the required positions. However, we can exploit the tran-
sient dynamics of the fluidic pressure, along with nonuniform
membrane properties, to immediately snap up or snap down
any segment of the membrane. This concept is illustrated in
Fig. 6, which presents numerical solutions (see code in ref. 33)
of the transient flow in contact with a membrane with continu-
ously varying properties. In Fig. 6, the same set of Eq. 3 were
solved. However, in this case, the snapping pressure spatially
varied according to ps(x ) = c1/(x − c2) + c3, and the inlet pres-
sure was in the form of pin(t) =Ain(H [t ]−H [t −∆t ]), where
H is the Heaviside function. For c1 = 8.167 kPa·m, c2 = 0.0817
m, and c3 =−0.05 kPa, Fig. 6 A1–A3 presents three different
inlet pressure signals that vary in amplitude Ain and duration
∆t . Fig. 6 B1–B3 presents the pressure field for different times
(solid lines) along with snapping pressure distribution along the
channel (pup

s ) (dashed black line). At regions where the fluidic
pressure field surpasses the local value of the snapping pres-
sure p(x , t)> pup

s (x ), the structure will snap up (segments that
snapped up are marked by a red background). We can see that
the combination of actuation amplitude and duration determines
the snapping region. Short duration with high amplitude actu-
ates a segment near the inlet (case 1). Medium amplitude and
medium duration actuates a segment in the middle (case 2). Low
amplitude and long duration actuate a segment near the outlet
(case 3). Thus, transient viscous dynamics allow us to directly
initiate a snap-through in any segment of the membrane. By com-
bining these different signals, and using the same principle with
negative gauge pressures that initiate the snapping-down phe-
nomenon, any desired pattern of the different equilibria states
can be directly achieved.

In Fig. 7, we experimentally demonstrate this concept, using
a membrane with piece-wise spatially varying snapping pres-

sure. At region 0≤ x ≤ 200 mm, there are three glued layers of
elastic membranes, yielding ps = 35 kPa. At region 200≤ x ≤
600 mm, there are two layers, yielding ps = 15 kPa. At the
remainder of the membrane (600≤ x ≤ 800 mm), there is a sin-
gle layer, yielding ps = 5 kPa. The direct actuation of each of
these segments by varying the inlet pressure amplitude Ain and
duration ∆t is presented in Fig. 7 A–C. We show that (Ain , ∆t)
of (40 kPa, 5 s) snap up the region near the inlet, while (Ain , ∆t)
of (30 kPa, 10 s) snap up the region in the middle of the chan-
nel, and (Ain , ∆t) of (10 kPa, 50 s) snap up the region near
the outlet. The snapping-pressure measurements were based on
averaging six experiments and used air actuation to ensure elim-
ination of transient fluidic effects, yielding SD under ±1.3 kPa
in all cases. Finally, in Fig. 7D, we demonstrate the combination
of such signals to create a rather complex deformation pattern
of the membrane. The effects of the membrane geometry on
the snapping pressure are discussed in SI Appendix, Fig. S4 and
section 3.

To conclude, in this work, we addressed the challenge of
underactuated control of continuous multistable structures,
which could play a vital role in the fields of soft robotics, MEMS,
and meta-materials. We focused our study on a simple illustrative
configuration composed of an slender elastic membrane, which
is actuated by a viscous fluid. The membrane is able to concur-
rently sustain two different modes of stable cross-section shapes
at different segments of the membrane. These different segments
are shown to be separated by transition regions, and the location
of these regions sets the stable equilibrium shape of the mem-
brane. We theoretically analyzed and experimentally demon-
strated the formation and motion of a single, and multiple,
transition regions due to manipulation of the fluidic inlet pres-
sure. We showed that sequencing of multiple transition regions
enables one to achieve underactuated control of the membrane
equilibria shape.

Detailed descriptions appear in SI Appendix, and related
codes used in the work are available at Figshare, https://doi.org/
10.6084/m9.figshare.11648022.v1.
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