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This work addresses the challenge of underactuated pattern gen-
eration in continuous multistable structures. The examined con-
figuration is a slender membrane which can concurrently sustain
two different equilibria states, separated by transition regions,
and is actuated by a viscous fluid. We first demonstrate the forma-
tion and motion of a single transition region and then sequencing
of several such moving transition regions to achieve arbitrary
patterns by controlling the inlet pressure of the actuating fluid.
Finally, we show that nonuniform membrane properties, along
with transient dynamics of the fluid, can be leveraged to directly
snap through any segment of the membrane.

viscous flow | bistability | multistability | soft actuators | soft robotics

A bistable or a multistable elastic element is a structure capa-
ble of transforming between different equilibrium defor-

mation patterns, due to the stability transitions of its charac-
teristic energy profile (Fig. 1) (1, 2). Bistable elements, such
as curved elastic membranes, which exhibit snapping instabili-
ties, are becoming increasingly popular in the design of switches
and actuators in microelectromechanical systems (MEMS), for
designing mechanical logic systems, origami structures, and
energy-efficient soft robots (3–5). A common way to fabri-
cate such a system is by combining multiple discrete bistable
elements, yielding the entire configuration as a multistable
structure.

Pressurization of confined fluids is a leading method for the
actuation of such bistable elements, yielding governing dynamics
involving both viscous and elastic effects. While the interaction
of fluids bounded by elastic structures was extensively studied in
recent years (refs. 6–12, as well as discussion in ref. 13), only a
few researchers examined viscous flow interacting with bistable
elasticity (e.g., refs. 14–18). Previous relevant works involving
bistability and viscous flow include the work by Hazel and Heil
(19), who numerically studied the steady flow of a viscous fluid
through a thin-walled elastic tube connected to two rigid tubes.
When the pressure acting on the tube’s shell surpasses a crit-
ical value, the tube buckles and strongly modifies fluidic flow
within the tube. Another recent relevant work by Gomez et al.
(17) demonstrated passive control of viscous flow in a channel
via an elastic arc positioned within the channel. By control-
ling the volumetric fluid flux, the bistable elastic arc can be
made to snap between two deformation patterns, therefore mod-
ifying the channel’s viscous resistance by order of magnitude.
Thus, the authors showed that bistability could be effectively
used to replace externally controlled valves. Arena et al. (20)
recently introduced a conceptual design for adaptive structures
that utilize the instabilities of postbuckled membranes to obtain
flow regulation and control. By tailoring the stress field in the
postbuckled state and the geometry of the initial, stress-free con-
figuration, the deformable section can snap through to close
or open the inlet completely, thus providing a self-stimulating
actuator that regulates the inlet flow without requiring external
flow-regulating mechanisms.

So far, all previous works examined the actuation dynam-
ics of either a single bistable element (21, 22) or multistable

structures (23–27), which are an assembly of discrete bistable
elements. In this work, we present analysis and demonstra-
tion of fluidic control of a continuous, multistable structure. In
contrast with discrete multistable configurations, such continu-
ous structures inherently have infinite possible stable patterns.
Importantly, in many of these works, each element has its own
control input for inducing transitions between its bistable states
(28, 29). Therefore, generating complex deformation patterns of
such a multistable structure typically requires control of multi-
ple inputs, which greatly complicates the system’s operation. We
thus focus on achieving underactuated fluidic control, enabling
to arbitrarily pattern such continuous structures by a single
pressure inlet.

The configuration studied in this work is presented in Fig. 2,
showing the experimental setup, including the membrane and a
transition region separating between the two different equilib-
ria states. The x coordinate denotes the streamwise direction,
where the inlet is located at x = 0. The location of the transi-
tion region is denoted by x−s (t)< x < x+

s (t). Initially, the entire
membrane is at the snapped-up state. A sudden decrease in
inlet pressure initiates snap-down near the inlet (Fig. 2, region
1). A transition region (Fig. 2, region 2) then starts propa-
gating, separating the snapped-down region from the mem-
brane segment, which remained at the initial snapped-up state
(Fig. 2, region 3). To achieve two stable equilibria states at
rest (meaning fluidic gauge pressure p = 0), we require both
pdown
s < 0 and pup

s > 0.
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Fig. 1. An illustration of a bistable behavior of a clamped–clamped curved
elastic membrane. At the initial state (A), the configuration is at a sta-
ble deformation pattern. When pressure is applied on the bottom surface
of the membrane, the component deforms gradually until a critical value
of the pressure (denoted by pup

s ). At this point, the component snaps
through a region of unstable deformation shapes (B) until reaching a sec-
ond stable deformation pattern (C). At state (C), decreasing the pressure
below pup

s will not bring the membrane back to state (A), due to hys-
teresis effect of the bistable dynamics. Snapping back to state (A) requires
reaching a different lower critical value (denoted by pdown

s ), associated with
state (C).

The experimental setup consists of a rectangular channel, a
pressure-flow controller, and a viscous fluid reservoir (Fig. 2).
We used a rigid material for the side and bottom walls
[poly(methyl methacrylate)] and soft membrane (latex) for the
top wall. The dimensions of the fabricated channel were 16.6 ×
15.8 × 800 mm (width × height × length), and the soft mem-
brane was 35 mm wide and 0.52 mm thick, with an elastic
modulus of E = 100 MPa. To obtain a geometric bistabil-
ity, we clamped the 35-mm-wide membrane onto the shorter
15.8-mm-wide channel (Fig. 2). This created two stable defor-
mation states, with centerline heights of 29.6 and 2.05 mm for
the snapped-up and -down states. We connected the channel
to a pressure controller (Elveflow OB1) at the inlet (at x =
0 mm) and kept the outlet (at x = 800 mm) open to atmospheric
pressure. To actuate the channel, we used glycerol as a viscous
fluid (ρ = 1.26 g/cm3 and viscosity of µ = 1.412 Pa·s). The
snapping pressures (definitions in Fig. 1) were experimentally
measured as pup

s = 5 kPa for snapped-up and pdown
s = −5 kPa for

the snapped-down state, with SD of ±0.13 kPa for both states.
The measurements were based on averaging six experiments
and used air actuation to ensure elimination of transient fluidic
effects.

Using this setup, in Fig. 3, we demonstrate the propagation
of a single transition region in the channel. The initial state of
the membrane is at a snapped-up state, and then we apply a
Heaviside inlet pressure function of pin = −10 kPa at t = 0 s.
The negative inlet pressure creates transition to snap-down near
the inlet as well as a transition region separating the snapped-
up state far from the inlet. As time progresses, the transition
region propagates along the flow direction, and the membrane
gradually changes its state from snapped-up to snapped-down.
The shape of the membrane at different time intervals is pre-
sented in Fig. 3, where the blue and black lines represent the
theoretical (derivation below) and experimental location of the
transition region xs vs. time t . We also report a characteristic
length of the transition region of ≈4 channel widths, thus yield-
ing a ratio between the transition region length and the channel
length of 0.06.

To obtain insight regarding these results, we derived a theo-
retical model for the propagation of a single transition region
in a multistable channel (Fig. 3). We considered a viscous fluid
in a semi-infinite elastic channel with two stable cross-sectional
shapes for given fluidic pressures p. For simplicity, and based
on previous works such as refs. 25, 26, and 30, we adopted an
approximated trilinear relation between the pressure induced by

the internal flow and the channel cross-section. This approxi-
mation simplifies the relation between the fluidic pressure and
the cross-sectional deformation to linear functions in both stable
regions. This leads to a model of linearly elastic snapped-down
channel at pressure below pup

s and a model (with different geo-
metric and physical parameters) of linearly elastic snapped-up
channel at pressure above pdown

s . These two regions are then con-
nected by an unstable branch, which is assumed to be linear as
well. Combining these regions yields the trilinear relation. In
addition, we assume that the channel length is much larger than
the transition region separating between the two states. We thus
consider the flow of a Newtonian incompressible fluid, governed
by conservation of mass ∇· u = 0, and, assuming negligible iner-
tia, the Stokes equation is ∇p =µ∇2u, where u is the velocity
vector, p is pressure, and µ is the viscosity of the fluid. For flows
in slender deformable channels, the mass-conservation equation
can be integrated to take the following form:

w
∂h̄

∂p

∂p

∂t
+
∂q

∂x
= 0, [1]

where q is the volumetric flux in the x direction, w is the channel
width, and h̄ is the average height which represents a rectangular
channel with identical cross-section area. Similarly, applying the
standard lubrication approximation allows simplifying the Stokes
equation to

q =−wh̃3

12µ

∂p

∂x
, [2]

where h̃ is the hydraulic height, representing the height of
a rectangular channel which has identical viscous resistance
to our unknown channel geometry. The value of h̃ is read-
ily computed (here by using Abaqus) for both snapped-up and
-down cross-sectional shapes. The cross-sectional area is given
by wh̄(p) = aip +wh̄i , where h̄i are constants (i = 1, 3) repre-
senting the after and before snap-through cross-sectional areas
for p = 0 (Fig. 2). Similarly, a trilinear relation is assumed for the

Inlet
(x=0)

Elastic
membrane

Snapped-up

Outlet

Pressure 
controller

Viscous fluid
reservoir

Snapped-down

Transition region

(a)

xs(t)+

(1)                (2)                           (3)

xs(t)-

x

yz

Fig. 2. Experimental setup. The pressure controller regulates a constant
pressure at the viscous fluid reservoir, which is connected to the channel
inlet via a flow valve. At the inlet (x = 0), negative gauge pressure is applied
at t = 0, leading to snap-through of the elastic membrane between the
snapped-down state (1) to the snapped-up state (3). Those two regions
are separated by a transition region (2) that moves along the streamwise
direction. The channel outlet is connected to another reservoir, which is
opened to atmospheric pressure. A close-up view of the transition region
is presented in Inset (a).
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Fig. 3. Comparison between analytical and experimental results. Experi-
mental and analytical results for a single transition-region propagation and
the location of the transition region at different time intervals (from 0 to
80 s) and at varying inlet pressure (pin 0 to −10 kPa) (red line, denoting
inlet pressure) are shown (Movie S1).

channel viscous resistance, yielding h̃3(p) = bip + h̃3
i , where, in

this case, bip is neglected compared with the h̃3
i term. By

substituting Eq. 2 into Eq. 1, we get

ai
∂p

∂t
=

h̃3
i

12µ

∂

∂x

(
∂pi
∂x

)
, [3]

where i ∈ [1, 3]. The initial and boundary conditions are
p1(x = 0, t > 0) = f (t), p3(x , 0) = p1(x , 0) = 0, p1(x−s , t) =
p3(x+

s , t) = ps , and p3(x→∞, t) = 0, where ps is the snapping
pressure (and may represent either pup

s or pdown
s ; Fig. 1).

In addition to the above conditions, applying integral mass
conservation on the transition region located at xs , and
limiting the configuration to sufficiently small transition
region, yields the mass-conservation condition at the transition
region

q(x−s )− (a1ps +wh̄1)
∂xs
∂t

= q(x+
s )− (a3ps +wh̄3)

∂xs
∂t

. [4]

Substituting Eq. 2 into Eq. 4 yields

∂p1
∂x

∣∣∣∣
x=x−

s

− h̃3
3

h̃3
1

∂p3
∂x

∣∣∣∣
x=x+

s

=
∂xs
∂t

κ, [5]

which provides an additional condition for obtaining the loca-
tion of the transition region xs(t), and where κ= ps(a3− a1) +
w(h̄3− h̄1). The governing Eq. 3 are similar to one-dimensional
heat transfer problem involving a phase change, known as the
Stefan problem (31, 32). Integration and determining the inte-
gration coefficients by applying boundary and initial conditions
yields the self-similar result of

p1(x , t) = pin +
ps − pin
erf (β)

erf

(
x

√
3a1µ

wh̃3
1

t

)
, [6A]

p3(x , t) =
ps

1− erf

(
β

√
h̃3
1a3

h̃3
3a1

)[1− erf

(
x

√
3a3µ

wh̃3
3

t

)]
, [6B]

where xs =β
√

(3a1µ)/(wh̃3
1 )t is the location of the transition

region, and β is a constant still to be determined. To calculate
β, the expressions obtained to the pressure in both regions Eq. 6
are substituted into Eq. 4, yielding the additional relation

ps − pin
erf (β)

e−β2

+
e
−β2 h̃31 a3

h̃33 a1

1− erf
(
β

h̃3
1a3

h̃3
3a1

)√ h̃3
3a3

h̃3
1a1

ps +β
√
π

h̃3
1

12a1µ
k = 0,

[7]

(where κ is defined after Eq. 5). While Eq. 7 is implicit in
β, an approximate explicit solution can be obtained by regular
asymptotic expansions (SI Appendix, section 1)
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Fig. 4. Experimental results of patterning using multiple transition regions
propagation. (A and B) A presents the inlet pressure profiles, and B presents
the corresponding final steady deformation patterns. C presents the evolu-
tion of case a in A. Initially, the channel is at the snapped-up state. Then, we
applied varying inlet pressures between negative- and positive-gauge val-
ues (red line; denoting inlet pressure) to generate moving snap-down and
-up transition regions, which allow patterning of the continuously multi-
stable membrane. After sequencing three transition regions (denoted by
black line), separating four different stability states that are obtained, we
removed pressure actuation, and the membrane pattern remained stable
(t = 133 s) (Movie S1).
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Fig. 5. Transient and static transition-region shapes. A and B present the
moving snap-up and -down transition region, which are inverse of each
other; C and D present the nearly unchanged shapes of the static transition
region.

βasymptotic ≈
√

3a1µ

h̃3
1

(pin − ps), [8]

thus relating the motion of the transition region to the physical
and geometrical parameters of the system. Calculation of β for
the current configuration is presented in SI Appendix, section 2.
As is evident in Fig. 3, a good agreement is observed between the
estimated location of the transition region and the experimental
results.

Above, we analytically analyzed and experimentally demon-
strated the emergence and motion of a single transition region
and showed that when the inlet pressure returns to its nominal
value, the membrane’s shape remains nearly unchanged. Thus,
by sequencing several inlet pressures, any pattern of a snapped-
down and -up regions along the channel can be created. The use
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Fig. 6. Direct fluidic-induced patterning of any segment of a nonuni-
form membrane. Numerical solution of a membrane with spatially varying
snapping pressure value is shown. (A1–A3) Three different inlet pressure
actuations that vary in amplitude (Ain) and duration (∆t). (B1–B3) Pressure
distribution vs. streamwise direction (x) for different times (full lines) along
with snapping pressure distribution along the channel (pup

s ) (denoted by a
dashed black line). Each case of actuation (1–3) snaps directly a different
segment of the membrane (red background). The numerical code used is
included in ref. 33.

of multiple moving transition regions for patterning is presented
in Fig. 4. Fig. 4A presents various inlet pressure profiles, and the
corresponding final patterns are presented in Fig. 4B. Fig. 4C
focuses on the first pressure profile in Fig. 4A (marked by a blue
line) and shows the temporal evolution of the patterning process.
Initially, the channel is entirely at the snapped-up state. Then, we
applied alternating positive- and negative-gauge inlet pressures
(red line in Fig. 4, denoting inlet pressure) to generate moving
snap-down and -up transition regions, thus patterning the equi-
librium state of the continuously multistable membrane. Fig. 4
shows the evolution of the membrane shape and presents the
location of the transition regions vs. time, as well as snapshots
of the membrane shape at different time intervals.

We note that the shape of the transition regions, separating
between the different cross-sectional equilibria states, resembles
a single wrinkle (Fig. 5). Two possible geometric configurations
of this wrinkle were observed and shown to be determined by
the inducing flow field. In addition, some asymmetric wrinkles
were occasionally observed, but were unstable and collapsed
to the symmetric form (Fig. 4; at times 84 < t < 91 [s]). A
snap-down transition region, moving in the streamwise direc-
tion, is presented in Fig. 5A. A snap-up transition region is
presented in Fig. 5B, which is similar to the inverse of the geome-
try presented in Fig. 5A. The transition-region shapes are nearly
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Fig. 7. Experimental results of direct fluidic-induced snapping of differ-
ent regions of a nonuniform membrane. Different inlet signals are used to
directly pattern different regions of a nonuniform membrane. The mem-
brane thickness is spatially varying. At region 0≤ x≤ 200 mm, there are
three layers of elastic membranes, yielding ps = 35 kPa. At region 200≤ x≤
600 mm, there are two layers, yielding ps = 15 kPa. At the remainder of the
membrane 600 < x < 800 mm, there is a single layer, yielding ps = 5 kPa.
A–C present inlet signals with different amplitude and duration (Ain, ∆t).
In A, we apply high amplitude and short duration (40 kPa, 5 s), yielding a
pressure field which snaps up only the three-layer region near the outlet.
In B, we apply medium amplitude and medium duration (30 kPa, 10 s) and
snap up the two-layer region in the middle of the channel. (C) We apply
low amplitude and long duration (10 kPa, 50 s) and snap up the one-layer
region near the outlet. D presents a combination of such signals to create a
rather complex deformation pattern of the membrane. See Movie S2.
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unchanged after the ending of the fluidic driven actuation, as
presented in Fig. 5 C and D.

So far, we examined only membranes with constant properties.
Arbitrary patterning of such membranes required sequencing of
several transition regions and waiting for all transition regions to
reach the required positions. However, we can exploit the tran-
sient dynamics of the fluidic pressure, along with nonuniform
membrane properties, to immediately snap up or snap down
any segment of the membrane. This concept is illustrated in
Fig. 6, which presents numerical solutions (see code in ref. 33)
of the transient flow in contact with a membrane with continu-
ously varying properties. In Fig. 6, the same set of Eq. 3 were
solved. However, in this case, the snapping pressure spatially
varied according to ps(x ) = c1/(x − c2) + c3, and the inlet pres-
sure was in the form of pin(t) =Ain(H [t ]−H [t −∆t ]), where
H is the Heaviside function. For c1 = 8.167 kPa·m, c2 = 0.0817
m, and c3 =−0.05 kPa, Fig. 6 A1–A3 presents three different
inlet pressure signals that vary in amplitude Ain and duration
∆t . Fig. 6 B1–B3 presents the pressure field for different times
(solid lines) along with snapping pressure distribution along the
channel (pup

s ) (dashed black line). At regions where the fluidic
pressure field surpasses the local value of the snapping pres-
sure p(x , t)> pup

s (x ), the structure will snap up (segments that
snapped up are marked by a red background). We can see that
the combination of actuation amplitude and duration determines
the snapping region. Short duration with high amplitude actu-
ates a segment near the inlet (case 1). Medium amplitude and
medium duration actuates a segment in the middle (case 2). Low
amplitude and long duration actuate a segment near the outlet
(case 3). Thus, transient viscous dynamics allow us to directly
initiate a snap-through in any segment of the membrane. By com-
bining these different signals, and using the same principle with
negative gauge pressures that initiate the snapping-down phe-
nomenon, any desired pattern of the different equilibria states
can be directly achieved.

In Fig. 7, we experimentally demonstrate this concept, using
a membrane with piece-wise spatially varying snapping pres-

sure. At region 0≤ x ≤ 200 mm, there are three glued layers of
elastic membranes, yielding ps = 35 kPa. At region 200≤ x ≤
600 mm, there are two layers, yielding ps = 15 kPa. At the
remainder of the membrane (600≤ x ≤ 800 mm), there is a sin-
gle layer, yielding ps = 5 kPa. The direct actuation of each of
these segments by varying the inlet pressure amplitude Ain and
duration ∆t is presented in Fig. 7 A–C. We show that (Ain , ∆t)
of (40 kPa, 5 s) snap up the region near the inlet, while (Ain , ∆t)
of (30 kPa, 10 s) snap up the region in the middle of the chan-
nel, and (Ain , ∆t) of (10 kPa, 50 s) snap up the region near
the outlet. The snapping-pressure measurements were based on
averaging six experiments and used air actuation to ensure elim-
ination of transient fluidic effects, yielding SD under ±1.3 kPa
in all cases. Finally, in Fig. 7D, we demonstrate the combination
of such signals to create a rather complex deformation pattern
of the membrane. The effects of the membrane geometry on
the snapping pressure are discussed in SI Appendix, Fig. S4 and
section 3.

To conclude, in this work, we addressed the challenge of
underactuated control of continuous multistable structures,
which could play a vital role in the fields of soft robotics, MEMS,
and meta-materials. We focused our study on a simple illustrative
configuration composed of an slender elastic membrane, which
is actuated by a viscous fluid. The membrane is able to concur-
rently sustain two different modes of stable cross-section shapes
at different segments of the membrane. These different segments
are shown to be separated by transition regions, and the location
of these regions sets the stable equilibrium shape of the mem-
brane. We theoretically analyzed and experimentally demon-
strated the formation and motion of a single, and multiple,
transition regions due to manipulation of the fluidic inlet pres-
sure. We showed that sequencing of multiple transition regions
enables one to achieve underactuated control of the membrane
equilibria shape.

Detailed descriptions appear in SI Appendix, and related
codes used in the work are available at Figshare, https://doi.org/
10.6084/m9.figshare.11648022.v1.
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