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of Beam-Shaped Soft Robotic Actuators
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Abstract

Elastic deformation of beam-shaped structures due to embedded fluidic networks (EFNs) is mainly studied in the
context of soft actuators and soft robotic applications. Currently, the effects of viscosity are not examined in such
configurations. In this work, we introduce an internal viscous flow and present the extended range of actuation
modes enabled by viscosity. We analyze the interaction between elastic deflection of a slender beam and viscous
flow in a long serpentine channel embedded within the beam. The embedded network is positioned asymmetrically
with regard to the neutral plane and thus pressure within the channel creates a local moment deforming the beam.
Under assumptions of creeping flow and small deflections, we obtain a fourth-order integro-differential equation
governing the time-dependent deflection field. This relation enables the design of complex time-varying defor-
mation patterns of beams with EFNs. Leveraging viscosity allows to extend the capabilities of beam-shaped
actuators such as creation of inertia-like standing and moving wave solutions in configurations with negligible
inertia and limiting deformation to a small section of the actuator. The results are illustrated experimentally.
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Introduction The goal of this work is to examine low-Reynolds number
fluid-structure interaction in the context of beam-like soft ac-
N THIS WORK, we examine the interaction between a low- tuators driven by an embedded fluidic region. We show that
Reynolds-number flow in a serpentine channel network, viscous effects can be applied to significantly extend the pos-
embedded in a slender elastic beam, and the time-varying de-  sible deformation modes of such actuators. By connecting
flection field of the beam. The embedded fluidic network (de-  viscous dynamics to such a basic structural element, viscous
noted hereafter as EFN) is positioned asymmetrically to the actuation of more complex structures, comprising multiple
neutral plane and thus pressurization of the channel network beam elements, may be achieved (e.g., dynamic legged loco-
creates a local moment and deflection of the beam. The rate of motion of a soft robot). In the Problem Formulation section, we
change in the channel cross-section area affects the internal formulate the problem configuration. In the Analysis section,
viscous flow, therefore connecting the flow-field to beam dy- we obtain a governing equation relating viscous flow to elastic
namics governed by the Euler—Bernoulli equation. The con- deformation. In the Results section, we present several solu-
figuration and coordinate systems are illustrated in Figure 1. tions of the governing equations, and in the Experimental
The interaction between low-Reynolds-number flows and Illustration section, these solutions are illustrated experimen-
elastic deformation is relevant to various fields such as swim-  tally. The Concluding Remarks section includes a brief sum-
ming of micro-organisms,' blood flow in small vesicles, viscous  mary and some concluding remarks.
peeling,” and dynamics of elastocapillary coalescence,>* among
other subjects.>™!! The configuration examined in this work is .
common to soft actuators'2~'° and soft robotic applications,?* > Problem Formulation
where current research is mostly focused on quasistatic solid We consider the dynamics of an elastic beam, initially at
dynamics and inviscid flows. Utilizing viscosity as studied in  rest, with a serpentine channel network embedded within it
this work could provide an increased range of actuation modes  asymmetrically with regard to the neutral plane (Fig. 1a). The
available to a given actuator geometry. embedded channel network is filled with a viscous fluid and
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An illustration of an interconnected parallel channel network positioned asymmetrically with respect to the neutral

plane. (a) EFN at rest. (b) The deflection due to uniform pressure EFN. (¢) y; — z; plane and definition of channel cross
section. (d) x; — zg plane illustrating network with a varying channel density distribution. EFN, embedded fluidic network.

time-varying pressure is introduced at the channel inlets at
one or both ends. Due to the pressure field applied by the fluid
at the solid—fluid interface, the channel cross section deforms,
thus deflecting the external beam structure (Fig. 1b).

We define beam height A, width b,, and length [; and
require i, /by<<1 and b,/I;<1. Young’s modulus, Poisson’s
ratio, and mass per unit length of the beam are E, v, and p,,
respectively. An interconnected parallel EFN is located
within the beam perpendicular to the x; — y; plane (Fig. 1a).
The length of a single serpentine segment is denoted by /. and
the width of the beam by b,, where I./b;~ 1. We limit our
analysis to configurations with [/[,>1 and (I.-n)/l~1,
where [ is the total length of the serpentine channel and 7 is
the number of channel segments of length /., in order to allow
approximating the discrete problem to a continuous function.
The embedded channel network is assumed to be sufficiently
small so as to have a negligible effect on the beam second
moment inertia / and mass per unit length p,.

The total deflection of the beam in the y, direction is de-
noted by d;. Assuming small deflections, we can define
dy=d, +d., where d. is the deflection due to the embedded
channel network and d, is the additional deflection due to
external forces and moments acting on the beam. We define
the channel density of the parallel channel network as
¢ =1/dz,, where dz, is the distance between the centers of
two adjacent channels. A single pressurized channel will
create a change in beam slope, defined as y.'*

The embedded channel coordinate system (x, y., z.) is de-
fined such that x. direction is the channel streamwise direction,
h. and b, denote channel characteristic height in the y,. direction
and width in the Zz. direction, respectively. We assume b, ~ h,
and define a small parameter representing channel slenderness,
&1 = h./I1<1. The parameters of the fluidic region are viscos-

ity, u, velocity u= (u,v,w), and gauge pressure, p. Channel
cross-section area is defined as a(x.,p)=ao(x.) + a1 (xc, p),
where ag(x.) is the cross-section area of the channel at gauge
pressure p =0, and a4 (x, p) describes the change of the cross-
section area due to the fluid pressure.

The governing equations for incompressible creeping
Newtonian flow are the Stokes equation

Vp = uVu (L
and conservation of mass
V-u=0. (2

In a previous work,'"* we presented a modified Euler—
Bernoulli equation governing the deflection of an EFN elastic
beam,
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where ¢(z,)(p(z5,1)/E 0¥ /d(p/E) represents the change in
beam slope due to embedded network pressure and f(z,,¢) is
the external force per unit length applied to the beam surface.
Equation (3) details a one-way coupling of fluid pressure to
beam deflection and we thus limit our analysis to configurations
where fluid pressure in the embedded network, created by ex-
ternal forces acting on the beam surface, is negligible compared
with pressure applied at the network inlets.

We focus our analysis on parallel serpentine channel
configurations embedded within a beam, as illustrated in



LEVERAGING VISCOUS FLOW IN SOFT ROBOTICS

Figure 1d, and assuming ¢(z,)>1, the channel coordinate x,.
may be related to the z, beam coordinate through

-xc(Zs) - lc / d)(zs) dZs + 2. (4)
0

Hereafter, we define normalized variables by capital letters
and characteristic values by asterisk superscripts. We define
the characteristic velocity (u*,v*,w*), characteristic gauge
pressure p*, characteristic channel cross section at gage
pressure a;, characteristic change in channel cross section
due to characteristic pressure aj, viscous-elastic timescale t;,
characteristic channel density ¢*, characteristic total beam
deflection d, characteristic elastic-inertial timescale #;, and
characteristic external force applied to the beam f*.

We here define normalized variables and coordinates.
These include normalized channel network spatial coordi-
nates (Xc,Ye,Zc) = (xc/l,ye/hes2c/he), time T=t/t;, fluid
velocity (in the [X,,Y.,Z.] coordinates) (U,V,W)=
(u/u*,v/v*,w/v*), pressure P=p/p*, volume flow rate at
channel cross section Q=gq/(h*u*), channel density
& (Zs) = ¢(z)/ ", beam spatial coordinates (X, Yy, Z;) =
(x5/bs, ys/hg, z5/ls) (Fig. 1c), beam total deflection Dy =
ds/d!, and external forces applied to the beam F=f/f*.
Channel cross section a(x.,p)=ao(x.) +ai(x;,p) is nor-
malized through af and af, such that it reads A(X.,P)=
Ao(X.) +a,- A (P) where 6, =dj/a;, =aj/h>.

Methods

The manufacturing of the beam consists of a two-stage cast
molding process. For the first stage, we used a 3D printed mold
manufactured from FullCure® 720 using an Objet Eden250™
printer, denoted hereafter as mold A. Liquid RTV silicone was
poured into mold A. After curing, the silicone cast was used
as the mold for the second stage, denoted mold B. Liquid
polyurethane-based rubber was poured into mold B. To ensure
geometric parallelism of cast faces, a glass pane and weights
were set on top of the filled molds during the curing process in
both stages. The molding process was used to separately create
two halves of the beam, which were then glued together by a thin
layer of the same polyurethane-based rubber. To create a strong
adhesion, a glass pane and weights were set on the curing beam.

Beam Young’s modulus E was estimated through a uniaxial
stretching experiment on a sample piece of the polyurethane
rubber. The beam property da;/dp, describing the change in
channel cross-section area due to change in fluidic pressure, was
calculated by applying known pressures at the channel inlet and
measuring the displaced fluid volume. The experiment was re-
peated over various pressures and linear regression was used to
obtain the value of da; /dp. Similarly, the coefficient 9y /d(p/E)
was calculated by setting various pressures at the beam channel
inlet and utilizing the Micro-Epsilon scanCONTROL 2650-100
laser profile sensor to measure the obtained deflections.

Analysis

Substituting the normalized parameters, we obtain

Z

X.=

D2) a2+ 7, 5)

3

and the resulting characteristic channel density ¢*=1/I.;.
Substituting the normalized variables into Equations (1) and
(2) yields, in leading order,

oP  9*U  9*U oP P
o~ ot o5 o ~ 0, — ~ 0, (6)
oX. aY.2 ' 9z2 oY, 07,
au v oW
~ 0 7
0X. oY, + a7, @)

where h/I~v*/u*=¢<1 and u*=p*ell/u. Integrating
Equation (7) over the channel cross section in the Y. —Z.
plane and applying Gauss theorem yields

a0 haA_O
X, z;v*aT_'

®)

We define Q; (X, A(X,, P)) as the normalized volume flow
rate calculated by the solution for the Poisson Equation (6);
for 9P/3X. = — 1 with no slip boundary conditions at the

wall, (U,V,W)|, .1 =Vya- From linearity, Q can be ob-
tained from Q; by
JoP
- A(X.,P)). 9
0 ax. 01 (A( ) )

Taking the derivative of A(X.,P)=A0(X.)+a,-A;(P)
with regard to T and substituting Equation (9) into Equation
(8) yields

9A1(P) 0P
oP AT

09

02P aP 90
- <W'Q1(A(XC,P))+ 1>

X 0X.
(10)

where order-of-magnitude analysis of Equation (10) deter-

mines the viscous-elastic timescale tf* as

*
«_ Ot G1H

(1)

The resulting convection—diffusion equation may be nonlin-
ear due to the pressure-dependent coefficients Q(A(X,, P))
and 0A;(P)/dP, which govern the diffusivity coefficient.
Setting both to constants degenerates Equation (10) to a linear
diffusion equation without the transport term (of the form
dP/dT = 018°P/0X?) and the characteristic timescale be-
comes t; = u(da1 /op)|,_ , /asei-

Substituting the normalized variables into Equation (3), we

get
/)

2
__ ¥ (5 +F(Z,T)
- aTz t; Sy )

P(X,T)

9> 9*D,
Fr [(azgz o)

12)
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with order-of-magnitude analysis yielding

Po*
d*: S 13
§ E.v,%l 13
and
. 9P
£=t (14)

where the elastic-inertial timescale is 7 = \/p,[*/EI

We define the ratio A=1t}/ 17, which determines the rel-
evant regime of beam dynamics. For the limit of small
deformations and constant coefficients Q;(A(X,,P)) and
A1 (P)/dP, the value of A is given by

N R

=3 = Vool U (15)
tf :u(aal/ap”p:po

For A>1, the viscous—elastic interaction propagates sig-
nificantly faster than inertial beam response, and the beam
behaves as responding to a spatially uniform time- Varymg
pressure. This case was studied in a previous work.'* For
A=0(1), the spatial pressure variation within the network
must be accounted for in the analysis and solid inertia will
take part in the interaction. For A<<1, beam inertia is negli-
gible and the beam deflection reflects viscous-elastic dy-
namics within the EFN.

Rewriting Equation (12) to isolate P(Z;, T) and applying
coordinate transformation Equations (5) to (10) yields the
governing equation system for the beam deflection,

oy

piz.r= (o2 2" ([ (roer- 22
00

Substituting Equation (16) into Equation (17), we obtain
the general form governing equation for beam deflection as a
fourth-order partial nonlinear integro-differential equation.
Choosing spatially uniform channel cross section, the pa-
rameters dy/d(p/E), 0A|(P)/oP, and Q;(A(Z;, P)) become
constants for sufficiently small deformation of the channel
cross section. Setting the network density ®(Z;) to constant
as well, Equations (16) and (17) may be combined to a
simplified governing equation of the form

[ s

aT3

3D
32 \dnd¢ — 225
> ndC = oot
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The parameter dy//d(p/E), which scales deflection, now
appears only in the boundary and initial conditions.

Equation (18) requires four boundary conditions and three
initial conditions. First, we define F; as the boundary or initial
condition function. Next, we define four possible boundary
conditions over Dy, formulated as a set of geometric and
dynamic conditions. Geometric conditions over deflection

Dy(o, T) = F((T) (19)
or slope
aD; B
() ! 0)

remain unchanged compared with standard Euler—Bernoulli
boundary conditions since they are applied directly on the total
deformation of the beam D,. The deflection due to EFN actu-
ation in the absence of external forces and moments is denoted
by D., which is related to P through [see Ref."*, eq. (4)]

*Dc
0Z2

W
d(p/E)

External forces or moments acting on the EFN-actuated beam
will create an additional deflection denoted as D,. Since the
total deflection is Dy =D, + D,, we apply Equation (21) to
relate the additional deflection due to moments and shear
forces at the boundaries to the total deflection D;. This yields
the moment boundary condition

(D(Zs) : P(Zs» T) 20

9D B o
(@), ~ro-ve rengE e
2 9*D;
o )d e — 622 (16)
-2
ap)Q1 . (¢>(Z:)+ 175> 0P 901 _ 9A\(P) 9P an

0Z, 0Z, P  OT’

and the shear force boundary condition
93Dy
iz’

where the moment is M =F;3(T), the shear force is
V =F(T), and P(o, T) is the applied pressure set at o« =0 or

2Ds }\‘2 B
oT?

9
0Z;

=Fy(T) -

(q><zs> P(a, >a<ffE>>

(23)

(o.7)

39*D, 9*D,

9Z*

+Q1[< (Z,,T) — }zo. (18)
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o= 1. The initial conditions of the deflections are directly
given by

DS(ZS’ O) = FS (Zs)’

aD;

aT
which are supplemented by the initial condition of the pres-
sure distribution within the channel

(24)

=Fe¢(Zs)
(Z,0)

(25)

P(Z,,0) = F;(Z,). (26)

Results

Figures 2-5 present several solutions of Equation (18),
illustrating the viscous-elastic dynamics of a beam with an
EFN, actuated by a time-varying pressure at the inlets. In all
presented cases, the beam and channel network are of iden-
tical geometry and physical properties. We set the timescale
ratioas A=t}/ 17 <1, thus solid inertia is negligible. We focus
on small deformations and therefore set dA;(P)/dP =1,
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FIG. 2. Cantilever EFN beam with a suddenly applied
inlet pressure. Cantilever beam clamped at Z; =0, starting
from rest Dy(Z;, T < 0)=0, with boundary conditions of
ramp pressure P(Z,=1,T)=H(T), where H(T) is the
Heaviside function and dP/9Z;(Zs=0)=0. (a) Beam de-
flection, (b) beam deflection normalized by D,(1,T), (c)
pressure. All plots are presented versus Zg for various times,
T=0.02, 0.15, 0.3, 0.7, 1.6, and 10. Color images avail-
able online at www.liebertpub.com/soro
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FIG. 3. Cantilever EFN beam with an oscillating inlet
pressure. Cantilever beam with an oscillating pressure inlet
introduced at Z,=1 as P(I,T):Plsin(2nF,, . T) setting
F,=10 and Py =13 (solid blue) and F,=0.1 and
Py =0.02 (solid red). Plotted lines represent a single cycle
period divided into six equal parts marked with respective
plot line labels. Deflection (a) and pressure (b) are presented
versus Z,. Color images available online at www.liebertpub
.com/soro
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FIG. 4. Simply supported beam with an oscillating pressure
introduced at both ends, producing a standing wave. Simply
supported beam with an oscillating pressure introduced to in-
lets at both ends, defined by P(0,T) = 1.5sin(2nT /5 + /2)
and P(1,T) = 1.5sin(2nT /5 + 3n/2). Plotted /ines represent
a single cycle period divided into four equal parts
marked with respective plot line labels. (a) Viscous de-
flection (solid blue lines) and exact standing wave
Dy(Z,,T) =0.01(sin(2nZ; + 2T /5) + sin(2nZ; —2=T/5)),
(dashed black lines) versus Z; (b) Respective pressure
profiles along beam length. Color images available online at
www.liebertpub.com/soro
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FIG. 5. Beam with an oscillating pressure introduced at
both ends, producing a moving wave. Beam support at Z; =0
is externally excited by (D;)| 7)= —0.0375sin(nT) and
(0Ds/9Zy)| (g ) =7 - 0.0375 cos(nT), free at Z;=1. Oscil-
lating pressure is introduced to inlets at both ends
P(0,T)=0.7sin(nT + =) and P(1,T)=0.8sin(nT + n/2).
Plotted lines represent a single cycle period divided into
six equal parts marked with respective plot line labels.
(a) Deformation due to viscous-elastic dynamics (solid blue
lines) and an exact moving wave, Dy(Z;,T)=0.0375
sin(nZs — nT), (dashed black lines) versus Z,. (b) Respective
pressure profiles along beam length. Color images available
online at www.liebertpub.com/soro

01(A(Z,,P))=0.3, and dy/d(p/E) =1 to constants. In ad-
dition, in all cases, we examine a uniform channel distribu-
tion ¢(Zs) =1.

Figure 2 illustrates a suddenly applied inlet pressure,
propagating through diffusion down the length of the chan-
nel. The examined configuration is a cantilever beam,
clamped at Z; =0, starting from rest Ds(Z;, T < 0)=0. A
ramp pressure boundary condition P(Z;=1,T)=H(T) is
introduced, where H(T) is the Heaviside function, and the
channel is sealed at Z;, =0, dP/3Z;(Zs=0)=0. Beam de-
flection Dy (Fig. 2a), scaled beam deflection D;/D(1,T)
(Fig. 2b), and fluid pressure P (Fig. 2c) are presented versus
Z, for various times, 7=0.02, 0.15, 0.3, 0.7, 1.6, and 10.
Both the pressure and deformation fields propagate into the
beam with speed of order of magnitude of O(1) [in dimen-
sional terms, OQa(’;a%/,u(aal/apﬂp_m ]. For T<I1, the
viscous-elastic dynamics have yet to propagate throughout
the length of the channel and only a part of the beam is
deflected. Thus, the boundary condition imposed on the
pressure at Z;=0 does not affect the dynamics until
T ~ 0.3, where pressure at the clamped end starts to build.
For T=0(1), the entire length of the beam has been en-
gaged and pressure slowly builds along its length until
achieving steady state.

Following Figure 2, introducing an oscillating pressure with
a significantly smaller oscillation period compared with the
viscous-elastic timescale, we expect only part of the beam to
deflect. In Figure 3, we examine such a cantilever beam where
the inlet pressure at Z, =1 is P(1,T) = P;sin (27rF,, . T). All
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other boundary conditions are identical to the beam in Figure 2.
Varying the inlet frequency F, =f[Hz] - #;[s] and the ampli-
tude of pressure oscillations P;, we are able to control the
length of the beam engaged in the oscillating motion. Setting
F,=0.1 and P; =0.02 creates a beam deflection of D, ~
0.006 at Z; = 1, where the entire beam is engaged (marked in
solid red lines). Setting F, =10 and P; = 1.5, we are able to
produce an identical beam deflection at Z; = 1, only this time
limiting the engaged beam length to 0.6 < Z; < 1 (marked in
solid blue). Plotted lines represent a single cycle period divided
into six equal parts marked with respective plot line labels.

In Figures 4 and 5, we illustrate the application of an os-
cillating pressure introduced to inlets at both ends as a
mechanism to create wave-like deflection fields. Matching
frequency and amplitude while modifying the phase, we are
able to create standing and moving waves in a system without
inertia, through viscous effects alone.

In Figure 4, we illustrate the deflection D; (Fig. 4a) and
pressure P (Fig. 4b) versus Z; for a simply supported beam,
hinged at Z; =0 and Z; = 1. Pressure is applied at both ends,
defined by P(0,7)=1.5sin(2n - 0.2T + n/2) and P(1,T)=
1.5sin(2% - 0.2T + 37/2). The obtained viscous-elastic defor-
mation field (solid blue lines) closely follows an inertial standing
wave of the form Dy(Z;,T)=0.01(sin(2nZ,+27n-0.2-T)
+ sin(2nZ; —2m - 0.2 - T)), (dashed black lines). Plotted lines
represent a single cycle period divided into four equal parts
marked with respective plot line labels.

In Figure 5, the beam support at Z;=0 oscillates
with (Dy)| g, 7y = —0.0375sin(nT) and (0D, /0Z;)| ¢ 1) =1
0.0375 cos(nT). The beam is free at Z; =1 and pressure is
introduced to inlets at both ends by P(0, T) = 0.7sin(nT + )
and P(1,T)=0.8sin(nT 4 7/2). In this case, the deforma-
tion of the beam (blue solid line) closely matches an exact
moving wave given by Ds(Z;, T)=0.0375sin(nZ; — nT)
(dashed black lines). Plotted lines represent a single cycle
period divided into six equal parts marked with respective
plot line labels.

Experimental lllustration

An EFN beam was fabricated, with the following beam
parameters: i = 12[mm)], [, = 200[mm)], b; = 90[mm], /. =56
[mm], / = 1600[mm)], &, =2[mm], b, =2[mm] and embedded
with a total of n =25 channels. To apply pressure to the EFN at
the beam free end without affecting beam dynamics, two auxil-
iary channels were added. The channels connect the EFN far end
to an inlet at the clamped end. The channels were positioned
symmetrically with regard to the neutral plane and have a circular
cross section with a diameter of 4[mm].

The EFN beam structural properties are measured to be
o /d(p/E) ~ 0.4 and da;/dp ~ 8.75- 10~ [m?/Pa]. The
experimental setup is illustrated in Figure 6. In all experi-
ments, the beam was positioned with its deflection plane
perpendicular to gravity, acting in the X direction. De-
formation was measured relative to the contour of the beam at
rest, and the beam was allowed to achieve equilibrium be-
tween experiments over a period of time no less than one order
of magnitude greater than the viscous-elastic timescale. Using
Elveflow® OB1 MK3 pressure controller to pressurize a fluid
reservoir connected to the EFN, we introduced a varying
pressure signal at the channel inlets and measured the beam
deflection by a MicroEpsilon scanCONTROL 2650-100 laser



LEVERAGING VISCOUS FLOW IN SOFT ROBOTICS

profile sensor. The sensor was positioned 330[mm] from the
beam and was able to measure a region of 0.4 < Z; < 1 of the
beam length, providing 640 spatial sample points.

Beam material is a two-component polyurethane-based
rubber. Material Young’s modulus was measured using
Hooke’s law and recording the elongation of a rectangular
sample loaded with known weights, E =~ 1.5 [MPa]. Density
was calculated through sample weight-to-volume ratio,
p ~ 1110[Kg/m?]. In all experiments, we first initiated the
laser scanner and immediately activated the Elveflow pres-
sure controller, setting =0 to be the time when deflection
was first noted by the laser scanner. Beam deformation was
kept at least one order of magnitude less than beam length,
d;/1;<1, thus ensuring solid strain field in the elastic limit.
All experimental results shown after applying a moving av-
erage of 50 sample points over 5 consecutive experiments
and error bars represent one standard deviation.

To clearly illustrate the diffusive propagation of beam
deflection, we applied a sudden pressure of the form
p(t>0",z,=1;)=101[KPa] at the free end of the beam

0.0
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FIG. 7. Experimental data of a cantilever EFN beam
with a suddenly applied inlet pressure. Cantilever beam
with Z;=0 set at beam clamp, starting from rest
Dy(Z;, T < 0)=0, with boundary conditions of step pres-
sure P(Z;=1,T)=H(T), where H(T) is the Heaviside
function and 9P/dZ;(Zs=0)=0. Beam deflection nor-
malized by D(1,T) is presented versus Zg, comparing
theoretical prediction (solid lines) with experimental data
(markers). Error bars denote one standard deviation. Color
images available online at www.liebertpub.com/soro

30[mm)]

FIG. 6. Illustration of ex-
perimental setup. (a) Setup
components (I) scanCON-
TROL 2650-100 laser profile,
(I) Elveflow® OBl MK3
pressure controller, (II) fluid
reservoir, (IV) beam stand,
and (V) EFN beam. (b) EFN
beam at rest. (¢) Actuated
EFN beam. Solid blue line
represents neutral plane at
steady state of the actuated
beam. Beam neutral plane at
rest is illustrated in dashed
blue line and laser field in
transparent red. Color images
available online at www
iebertpub.com/soro

and blocked the inlet at the clamped end at z;=0. The
channel network was filled with a high viscosity silicone oil,
1=>58.2[Pa - s]. Figure 7 presents beam deflection normal-
ized by D4(1, T) versus Zs for several normalized times (tip
deflection at 7 =3 was d; ~ 30.6[mm)|, and p* = 101[KPa)).
Theoretical solutions of Equation (18) are presented by solid
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FIG. 8. Experimental data of a cantilever EFN beam with
oscillating inlet pressure. Cantilever beam starting from rest
with an oscillating pressure inlet introduced at Z;=1 as
P(1,T) = P;sin(2nF, - T), where Py =p; /p*, py = T0[KPa,
and f=0.01[Hz]. (a) Silicone oil-actuated EFN beam
p=582[Pa-s], 1 ~8l14[s], normalized frequency of
F, ~8.14, and resulting d; ~ 0.066/mm]. (b) Glycerol-
actuated EFN beam p = 1.15[Pa - s, #; ~ 16.1]s], normalized
frequency of F, ~ 0.16, and resulting d; ~ 19.6mm]|. De-
flection is illustrated through centerline and each cycle is di-
vided into six equal parts. Cycle progresses with time from
light to dark. Beam deflection is normalized by Dy (1, T') versus
Zs, comparing theoretical prediction (/ines) with experimental
results (plot markers with error bars). Color images available
online at www.liebertpub.com/soro



lines and experimental results are denoted by markers. The
experimental data clearly depict concentration of the defor-
mation to the region near z; = [, for early normalized times
T<1, in agreement with the analytic results.

To illustrate the effects of fluid viscosity on beam re-
sponse to oscillating inlet pressure, we set two identical
beams actuated through an identical inlet signal, P(1,T)=
Plsin(ZnF,, . T), introduced at Z; =1, where Py =p,/p*,
setting p; = 70[KPa] and f = 0.01[Hz]. Figure 8a presents a
silicone oil-filled EFN beam, p~ 58.2[Pa - s], #; ~ 814]s],
normalized frequency of F), ~ 8.14, and resulting d; ~
0.066[mm]. Figure 8b shows a glycerol-actuated EFN beam,
p~ 1.15[Pa - s], t; ~ 16.1[s], normalized frequency of F), ~
0.16, and resulting d; ~ 19.6[mm]. Good agreement of ex-
perimental data and theoretical prediction is evident.

Concluding Remarks

In this work, we examined the effect of viscosity on the
possible deformation fields of beam-shaped soft actuators
driven by embedded pressurized fluid. We showed analyti-
cally and experimentally that by setting appropriate time-
varying inlet pressure signal, viscosity enables to increase the
possible deformation patterns available to a given actuator
geometry. These include limiting the deformation to a section
of the actuator as well as creating inertia-like waves in an
inertialess configuration. The presented model can be readily
expanded to more complex structures by superimposing
several beams in parallel or series.

Applying viscous effects to common soft robotic config-
urations (comprising materials such as PDMS or silicone and
with characteristic length scale of 1[cm]) requires introduc-
tion of a sufficiently viscous-driving fluid such as glycerin
(u~1Pa-s) to have similar viscous-elastic and elastic-
inertial timescales. Alternatively, similar timescales may
occur for low-viscosity fluids due to miniaturization of soft
robots and soft actuators.™

Our analysis focused on configurations where the effect of
externally applied bending moment on the pressure within the
channel network is negligible compared with the pressure
applied at the networks’ inlets. While this is a reasonable as-
sumption for beams actuated through a pressurized channel
network, the effect of a closed EFN on the dynamic response of
the beam to external forces is not modeled in this work and
may be of interest in a future study. In addition, while the
current analysis utilized the lubrication approximation for
the channel flow field coupled with Euler—Bernoulli model for
the solid, poroelastic mixture models could be leveraged to
examine similar configurations in future works involving po-
rous structures.
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