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Multistable Physical Neural Networks
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Artificial neural networks (ANNs), which are inspired by the brain, are a central
pillar in the ongoing breakthrough in artificial intelligence. In recent years,
researchers have examined mechanical implementations of ANNs, denoted as
physical neural networks (PNNs). PNNs offer the opportunity to view common
materials and physical phenomena as networks, and to associate computational
power with them. In this work, mechanical bistability is incorporated into PNNs,
enabling memory and a direct link between computation and physical action.
To achieve this, an interconnected network of bistable liquid-filled chambers is
considered. All possible equilibrium configurations or steady-states are first
mapped, and then their stability is examined. Building on these maps, both global
and local algorithms for training multistable PNNs are implemented. These
algorithms enable to systematically examine the network’s capability to achieve
stable output states and thus the network’s ability to perform computational
tasks. By incorporating PNNs and multistability, it is possible to design struc-
tures that mechanically perform tasks typically associated with electronic neural
networks, while directly obtaining physical actuation. The insights gained from
this study pave the way for the implementation of intelligent structures in smart
tech, metamaterials, medical devices, soft robotics, and other fields.
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robustness.!”! This led to the development
of neuromorphic computing, a field that
mimics the brain’s computation process
using physical mechanisms. The use of
spiking neural networks on neuromorphic
computing platforms, grounded in neural
processing principles, provides researchers
with valuable insights for constructing
adaptive and efficient artificial intelligence
(AI) systems.>*! This approach, influenced
by advancements in materials engineering,
device physics, chip integration, and neuro-
science, has generated significant interest
from both neuroscientists and computer
scientists.

Comprehensive reviews, published in
recent years, explored various facets of
neuromorphic ~ computing,  covering
device physics,”™ circuit design,®® and
network integration.'' Training of
neuromorphic systems, associated with
physical learning, requires the modifica-

1. Introduction

Brains are sophisticated biocomputational systems capable of
performing multiple complex tasks simultaneously, yet are
robust and remarkably power efficient.! Comprising billions
of neurons interconnected by trillions of synapses, the human
brain achieves these remarkable capabilities through extensive
connectivity, a hierarchical functional organization, advanced
learning rules, and neuronal plasticity.

Artificial neural networks (ANNs) were developed in order to
enable bio-inspired learning capabilities. ANNs, however, are
often computed using standard computers and lack many of
the advantages of brain computation properties, such as parallel-
ism, low energy consumption, fault tolerance, and inherent
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tion of physical elements to provide desired
computational outcomes. Previous studies
involved training both simulated and labo-
ratory mechanical networks, along with simulated flow networks,
to perform specific tasks by adjusting their internal degrees of
freedom.[">*! This training is achieved through the minimiza-
tion of a global cost function!’’2"**! or the application of local
rules facilitated by an external processor.'214716-22-24
Mechanical,"”** flow,?**% and resistor networks®”) can per-
form tasks by transforming data into physical stimuli and
responses, aligning with the common applications of machine
learning. Moreover, these systems, devoid of memory storage,
exhibit high robustness to damage, suggesting a novel direction
for computer design. The interplay between learning and memory
in physical systems underscores the importance of understanding
properties contributing to memory retention, paving the way for
leveraging material memory capabilities in training applica-
tions.!'*?%%] Bistable systems provide memory, programmability,
and compact design, making them suitable for diverse applica-
tions, including wearable robotics and medical devices.***!
Moreover, metamaterials such as mechanical neural networks
are being explored as potential solutions for precise control in soft
robotics involving bistable elements. Bistability streamlines con-
trol complexities, offering energy-efficient and adaptable solutions
for reliable soft robotic systems.**>) The dual-stable nature of
bistable soft actuators conserves energy in static positions and
enhances adaptability for variable stiffness and shape changes.’®!
In this research, we aim to incorporate mechanical bistability into
a physical neural network (PNNs), enabling memory and a direct
link between computation and physical action.
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The physical neural network examined in this work is
constructed from a flow network characterized by bistable
nodes, which incorporate internal, external, and output nodes.
The objectives of this study are: firstly, to delineate the potential
equilibrium configurations or the steady-states achievable by the
network, including an in-depth examination of their stability;
and finally, to train the network to perform desired tasks. A core
challenge in training is determining a network topology and
resistance configuration that directs the system to a desired equi-
librium state within the range of possible states, under external
loads. To address this, we developed two tailored methodologies:
global and local supervised learning approaches. These method-
ologies leverage the network’s mechanical properties to guide it
toward achieving targeted goals.

2. Results

This study aims to combine multistability into physical neural
networks. There are various possible physical systems, and in
this study, we focus on a physical network consisting of N inter-
connected hyperelastic chambers (being the nodes) linked by
rigid tubes (see Figure 1).

To explore the flow dynamics within the network, we formu-
late the system equations in matrix form. The pressures vector is
represented as p(t) = [py, . .., py]T, where p;(¢) is the hydrostatic
pressure inside the i chamber.?”*®! The nodes are modeled as
elastic bodies (i.e., chambers) which can undergo volume
changes, denoted by v(t) = [vy, ..., vy]T. The external volumet-
ric flow is expressed as q(t) = [q;, - - -, qy]”, Where g; represents a
prescribed external volumetric flow into the i node. Several
assumptions are made to model the fluid behavior within this

N

Illustration of a fluidic bistable PNN
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network: the fluid dynamic viscosity, g, is constant, and the flow
is laminar, fully developed, incompressible, and predominantly
influenced by viscous forces. Furthermore, it is assumed that the
viscous resistance of the nodes is negligible compared to that of
the tubes. These conditions allow the use of the Hagen—
Poiseuille law,*”! which characterizes the laminar flow of a
Newtonian fluid through cylindrical tubes. Under these assump-
tions, the volumetric flow rates, Q;, between the i" and j** cham-
bers, governed by Q; = Cj(p; — p;), exhibit a linear dependence

on their conductances, Cj;, where C;; = 1/R;; and R;; = 8ut’;/ ﬂa‘i}
represents the viscous resistance of the tube. This dependency is
influenced by the tube’s length, #;, and is inversely proportional
to the fourth power of the tube radius, aj.

Mass conservation at each node, while considering the entire

network’s conductances, yields

% =-Wp+q 1)
which is equivalent to Kirchhoff’s law for the current system.
The expression Wy =—Cy;+8;),Cy represents the
(weighted) graph Laplacian matrix, where §&; denoted
Kronecher delta. It takes into account not only the network’s
connection topology but also the tubes’ viscous resistance.
The matrix W is singular, with all non-zero eigenvalues having
a positive real part. We assume that the physical network can be
represented as a connected graph, and that W is irreducible and
its rank is N — 1, with the smallest eigenvalue being zero and all
others positive. Comprehensive mathematical details, including
theorems and supplementary proofs, can be explored in classical
literature on graph theory, such as reference.*”’ The N nodes of
the network include three subsets: b external inlet nodes

‘ Single bistable node

(Vmax- pmax)

Pressure
A31oug onselq

(Vmin' Pmin)

>
I Volume

Figure 1. lllustration of a hierarchical metamaterial structure composed of bistable nodes interconnected by rigid tubes, showcasing the concept of
design of the physical neural network in advanced metamaterial framework. Each node within this network is characterized by a distinct non-monotonic
pressure—volume relationship, leading to two practical and stable equilibrium phases, symbolized as v,_y and v,_;, or more simply, “0” and “1".
lllustrated by the blue curve is the node’s elastic potential, which clearly delineates two stable states separated by an unstable state, associated with

the spinodal branch.
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(denoted by %B,) that serve as boundary conditions, ¢ output
nodes (denoted by 7 ) that serve as target nodes. The remaining
d internal nodes are referred to as “hidden” nodes (denoted by
Dy). We note that d + b+ t = N holds. In addition, we divide the
external nodes into two distinct types of boundary conditions:
pressure-constrained external nodes and volumetric-constrained
external nodes.

2.1. Bistable Network

2.1.1. Characterization of Pressure-Volume Relationship in
Chambers

This work focuses on a physical bistable neural network.
A bistable element is characterized by two distinct stable equilib-
rium configurations under the same prescribed load, separated
by an unstable (spinodal) equilibrium state. Each bistable
element is defined by a non-monotonic pressure-volume
relation, p; = f(v;), featuring two phases of positive stiffness,
separated by an intermediate branch characterized by negative
stiffness, as illustrated in Figure 1 in the pressure-volume
characterization.?*373841743] \y/e note that the pressure-volume
curve starts at zero pressure when no tensile forces are acting on
the elastic wall, as in the case when gauge pressure is used.
This zero-pressure point corresponds to a stress-free elastic
configuration, where the chamber maintains an initial, non-zero
volume.4

Next, we define a functional relationship between node pres-
sure and volume, expressed as p = V., where y represents the
total elastic energy, given by w(v) =y ;(v;) + ... +wn(vy).
This functional relation is applicable in situations where a
(quasi-)static equilibrium is maintained, with the internal pres-
sure of the body balanced by structural forces that counteract the
pressure. Several examples of the use of such relations can be
found in.P#*4

For convenience, it is assumed that all elastic bodies have the
same pressure-volume relation. Consequently, two distinctly sep-
arated equilibrium phases are denoted as “0” and “1” associated
with volumes v € v, for the “0” binary state, or v € v,_; for
the “1” binary state. The local minimum and maximum points
of the pressure-volume relation are denoted as (Vpin, Pmin) and
(Vmax> Pmax)» Tespectively. Such behavior is observable in various
structures such as curved beams,**% thin-walled hyper-elastic
balloons,***~**! and pre-stressed elastic sheets.?'>*

2.1.2. Network Equilibrium and Steady-States

Equilibrium in the system is achieved in the absence of external
loading. A steady-state, on the contrary, is established when
certain nodes are constrained to maintain a constant pressure
and/or a constant flow, ensuring that the total incoming and
outgoing flow at these nodes is balanced. In both cases, the total
volume is conserved, necessitating that all nodes’ pressures
remain constant.

We define the initial volume of fluid within the network by v,
which includes the chambers and tubes. To assess the total vol-
ume of the flow as a function of time, we consider the set of all
nodes as a control volume, that is,
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V() = vo + / "Ly qe)de B

where 1y denotes the N vector of all unit elements. Steady-states
of the system, where the total volume is conserved as
Vi = lim,_, V(#), necessitate that all nodes’ pressures remain
constant, namely, Wp,, = q,,, where q,, denoted the flux injec-
tions vector where t > 1.

In cases where the external nodes are solely influenced by a
prescribed flow rate (i.e., no external pressure constraints are
applied), the steady-state solution is given by

Ps =01y + Wqus A3)

where a € R. The first right-hand term corresponds to the homo-
geneous solution, signifying a scenario with no injections into
the network and equal pressures along the network (i.e., equilib-
rium state). The second right-hand term represents the particular
solution, where W is the Moore—Penrose inverse of the Laplacian
matrix.>”

In scenarios where a subset of 1 < b; <b external nodes
undergo pressure constraints, pgc € R"*!, while the remaining
b, = b — b; nodes are governed by known volumetric fluxes,
Qe € R?*1; the system converges on a unique solution set that
satisfies the boundary conditions, which is given by

Ps = A(W)ppc + B(W)qzc (4)

where P, is the steady-state solution for the unloaded nodes, and
A € RIN-bxh and B € RIN-D*br are two known matrices that
depend on W and explicitly given in Equation (S3) and (S4) in
Supporting Information.

We thus observe that, in the absence of external loading (i.e., a
closed system without flux or prescribed pressure), the system
displays uniform pressure across all nodes upon reaching an
equilibrium state. Conversely, in scenarios where the system
is subjected to external loads (be it through flux, pressure,
or a combination) the resultant pressures at the nodes, post-
convergence (i.e., in steady-state), are constituted by a linear com-
bination of the system’s constraints. This linear combination is
significantly influenced by the elements of the Laplacian matrix,
indicative of the system’s dependence on both the network topol-
ogy and the viscous resistances of the tubes.

Moreover, the relationship between pressure and volume at
the nodes is crucial for understanding the system’s dynamics,
as it directly impacts flow rates, system capacity, and operational
efficiency. For linear relationship, the combination of the known
total volume, V;, with the solution provided in Equation (3) or (4)
yields a single solution, delineated by the steady-state configura-
tion of the network. However, in the context of nonlinear nodes
(i-e., nonlinear relationships between pressure and volume),
such as multistable bodies, the aforementioned conditions
may yield multiple solutions for node volumes. Since bistable
relationships are not inherently reversible, the system’s state
is not uniformly defined in certain scenarios, so to extract vol-
umes from pressure information, it is necessary to model the
states of bistable chambers.
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2.1.3. Network Stability

In what follows, we analyze the stability of the equilibrium and
steady-states of the network. A comprehensive stability analysis is
provided in Supporting Information. Here, we present only the
main results to provide a complete overview.

The elastic network is governed by a scalar elastic energy func-
tion, w;(v;), and the total elastic energy of the nodes is
w(v) =wi1(v) + ... +wy(vy). Further, the total volume of flow
within the network is known; hence, it is not necessary to solve all
N equations of motion (for more details, see Section B in the
Supporting Information). The resolution of N — 1 equations is
sufficient, achieved by removing one node arbitrarily.
Returning to the general dynamic Equation (1), we omit the
N degree of freedom, excluding the N* row and column from
the Laplacian matrix, along with the N** element in the vectors q,
p, and v. The reduced system can be expressed as
dv/dt = ~Wp + §. The constrained elastic energy function
can be eliminated as (V) =w(V,vy(V)) where V=
Vi, ...,vn_1]T  is  the reduced state vector, and
(@) =V =+ ... +vy_q).

Examining the eigenvalues of the Hessian matrix of the
(constrained) elastic energy, H; (i), allows us to infer the stability
of the network’s states. An equilibrium state is stable if and only
if the Hessian is positive definite, that is, Hy() > 0, which
occurs if and only if all leading principal minors are positive,
namely

M_{Y%

y .
i dvi

1
foralye[l,...,N—1]

As discussed in,®% the equilibrium state of the network is
based upon the distribution of nodes within the spinodal branch.
A network devoid of nodes in the spinodal branch is in a state of
stable equilibrium. Conversely, the existence of two or more
nodes within the spinodal branch signifies an unstable equilib-
rium for the network. In the case where only a single node lies in
the spinodal branch, the network achieves stability solely under
the condition that

N T
Z(%) <0 (6)

i=1

The study of the network’s steady-states and the stability of its
states reveals that in the absence of external loads, the network
will attain a pressure equilibrium across any arbitrary topology.
When the system is subjected to external loads, the steady-state
pressures achieved are influenced by both the network’s topology
and the resistances of the tubes. While the existence of steady-
state may rely on the topology and resistances, the steady-state
stability of the network remains unaffected by these parameters.
This finding catalyzes further investigation into bistable
networks.
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2.2. Resistance Tuning for Binary State Convergence in
a Four-Node Network

In this section, we analyze a simple network consisting of four
elements as a preliminary case study (see the inset in Figure 2),
motivating the overarching goal of guiding flow networks toward
a specific equilibrium state with known inputs. A pressure ppc is
prescribed to the inlet node; another non-adjacent node is
grounded (i.e., zero pressure). The viscous resistances of the
tubes are indicated by R34, with R; and R, representing the
resistances between the inlet node and the nodes number 1
and 2, respectively; and R; and R, representing the resistance
between the nodes number 1 and 2 and the grounded node.
At steady-state, according to Equation (4), the pressures of the
two outlet nodes satisfy

1 1

= mpso P = mlﬁsc (7)

121

It is observed that the nature of the steady-state, as described
in Equation (7), is dictated by the ratios of viscous resistances,
namely, R,/R; and R,/R,. To illustrate the system’s behavior,
our analysis is delineated into two distinct scenarios—the first
involves identical ratios. Subsequently, we explore the effects
of different ratios.

In the scenario where the ratios satisfying R;/R; = R,/Ry,
it is clearly apparent that steady-state is achieved when the
pressures at the nodes equalize among themselves and
P1 = P = Ppc/2. Considering this steady-state equation, when
PBe > 2Pmay O Ppc < 2Pmin, @ unique set of nodes’ volumes is
observed, as depicted in Figure 2a by dark-yellow points. This
prescribed pressure leads to a stable binary configuration of
(1,1) for the former case and (0,0) for the latter. Here, the binary
state of node number 1 is denoted first, followed by the binary
state of node number 2. However, the steady-state equation
may describe multiple solutions for the nodes’ volumes, if
2Pmax < Ppc < 2Pmin- Under such conditions, each node may
take one of three potential options, represented as orange points
in Figure 2a. Consequently, we identify nine possible binary con-
figurations, namely, (0,0), (0,s), (0,1), (1,0), (1,s), (1,1), (s,0), (s,s),
and (s,1), where “s” represents the spinodal state. To examine the
network’s nature and the stability of resultant steady-states, espe-
cially under conditions presenting multiple steady-state possibil-
ities, we direct the reader’s attention to Figure 2b. This figure
illustrates, within the state space {v;;v,}, the steady-state curves
alongside the system’s dynamic solutions under varying initial
conditions. The solutions to the initial steady-state equation
p1 = p, are shown in the black curve, which includes a trivial line
v; = v, and two additional curves forming a triangle-like feature
for non-trivial solutions, where v; # v,. Furthermore, the steady-
state must also satisfy pge = 2p; and pye = 2p,. These condi-
tions are represented by three distinct lines within the {v;;v,}
space, each illustrating the three potential volumes for pressures
that lie between the local minimum and maximum pressure
points in pressure-volume characteristic—, € v,y for
volumes within the binary domain “0”, ¥;; € v,_; for the binary
domain “1”, and ; € v, for the spinodal domain. Consequently,
by intersecting all steady-state curves within this space, nine fixed
points emerge. Points of stable configuration are highlighted in
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Figure 2. A theoretical investigation of a grounded flow network with four bistable nodes dictated by external pressure pgc. The viscous resistances are
denoted by R; ;3 4. a) Typical pressure-volume curve of a bistable element. The domain of volumes in binary states “0” and “1” is v € v,_g and v € vj_y,
respectively. A pressure higher than p,.., or lower than p..;, is denoted by p, and py, respectively, and the volumes are defined in a one-value manner. For a
pressure within the bistable domain, there are three different options for volume, marked by orange dots. b) {v;;v,} space to describe the dynamic
solutions of the system for the case where R;/R; = R,/R,. The black lines are solutions of the steady-state equations. The intersection between these
lines describes the fixed points of the system (green, blue, orange, and purple are stable, red is unstable). The gray arrows describe the dynamic solution
field, namely, {v;(t),v,(t)}. Several solution trajectories (gray curves) are presented for different initial conditions (marked with empty circles). The
colored regions indicate the areas where initial conditions will eventually converge to their corresponding stable equilibrium points, represented by
the same colors. ) {v;;v,} space to describe the network dynamics for the case where R, /R; < R,/R;. In the described map, there is one fixed point
described by the stable binary state (0,1) to which the network reaches from any initial conditions. d) {v;; v, } space to describe the network dynamics for
the case where Ry /R; > R, /R,. In the described map, there is one fixed point described by the stable binary state (1,0) to which the network reaches from
any initial conditions.

green, blue, orange, and purple, whereas unstable configuration
points are denoted in red. The stability of these points is deter-
mined based on the analysis Section 2.1.3. Following our stability
analysis, the system converges to different equilibrium points
based on the initial conditions, {v; ¢, v,0}. Specifically, for initial
conditions where v g < s and v, < ¥, the system converges to
the green equilibrium point, while conditions where v; , > #; and
V0 < D5 lead to the blue equilibrium point. Similarly, when
V1 < Py and v, > ¥, the system converges to the equilibrium

Adv. Intell. Syst. 2025, 2400694 2400694 (5 of 15)

point marked in orange, and for vy > ¥; and v, > ¥, it con-
verges to the purple equilibrium point. These regions are
highlighted in the background of the panel.

In the scenario where R;/R; # R,/R,, the equilibrium pres-
sures between the two nodes diverge, breaking the symmetry
between the network’s branches. Through a strategic choice of
resistance ratios, the network can achieve two stable but opposite
binary states under the same applied pressure. For illustrative
purposes, we assume at steady-state one node stabilizes at a

© 2025 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

85UB017 SUOWILIOD 3AIEe.D 8|gedl|dde au Ag peusenob afe ssoiLe YO ‘8sn Jo Sa|nJ 10} ARld 1T 8UIIUO A9|IAN UO (SUONIPUOD-PU-SWLBIAL0Y AS | 1M ARe.q I fpuluo//:Sdny) SUONIPUOD pue swe 1 8yl 885 *[5Z02/90/c0] Uo Ariqiauliuo A8|IM ‘1O uonnisu| geis|-uoluyde 1 Aq ¥69001202 ASTe/zZ00T 0T/10p/uod" Ao | 1m Aelq 1 pul|uo"paoueApe//sdny wo.j pepeojumod ‘0 ‘29570v92


http://www.advancedsciencenews.com
http://www.advintellsyst.com

ADVANCED
SCIENCE NEWS

www.advancedsciencenews.com

pressure above p,.. (denoted as p,, illustrated in Figure 2a),
while the pressure at the other node is below p,;,,, represented
as p,. This configuration yields a single steady-state, contingent
upon the resistance ratios. If R;/R; > R,/R,, it follows that
p1 = p, and p, = p,, guiding the network to a stable steady-state
in the (1,0) binary configuration from any initial condition.
Conversely, if R;/R; < R/Ry, then p; = p,; and p, = p,,, result-
ing in a stable steady-state in the (0,1) binary configuration from
any initial state. These outcomes are displayed in Figure 2c,d.
It is relevant to note that the removal of the assumption regard-
ing the nodes’ pressures relative to p,,,, and p,;, introduces addi-
tional stable binary states, such as (0,0) or (1,1). In this case, the
system’s convergence toward a specific state becomes dependent
on the initial conditions, further enriching the dynamical
behavior.

From the above, it is evident that both the network topology as
well as the tube resistances have a significant influence on the
network’s steady-state, specifically regarding the binary state con-
figuration, in terms of convergence of flow. While the topology
does not alter the stability of the steady-states, it impacts the exis-
tence of these points and the network’s convergence basins
toward equilibrium. Given a predetermined input, planning of
topologies can steer networks toward specified steady-states.
However, the scenario analyzed here represents a basic and
degenerate scenario. The structure of networks with more inter-
connections and complexity, on the contrary, requires more
advanced methods. This study will elaborate on these methods
in subsequent sections.

2.3. Network Morphology and Topological Study

In earlier studies, flow networks underwent training to demon-
strate the specific function of flow allostery!'®?" through global
supervised learning, involving the minimization of a global cost
function. This training was primarily focused on ensuring the
networks could exhibit a desired pressure drop across a target
edge (or multiple target edges) when a pressure drop is applied
across a source edge. However, as discussed earlier, relying
solely on the desired pressure drop across a target edge is insuf-
ficient for defining the equilibrium state of bistable networks, as
it neglects the consideration of binary states.

In the following sections, we introduce two distinct training
methodologies designed for the analysis of bistable flow net-
works, each tailored to meet specific network requirements
and external loading conditions. These complementary
approaches are presented to achieve the overarching goal of train-
ing the network topology and resistances to reach a desired equi-
librium state. Each method offers unique advantages and
limitations that will be discussed further in this work.

Initially, we explore a scenario where the network operates
without external pressure loading, functioning as a closed physi-
cal system. Within this framework, the system is capable of
adopting 2N different binary configurations, with the resulting
configuration of convergence being influenced by both the total
volumetric flow within the network and its topology. We postu-
late an initial state wherein the nodes are devoid of gauge pres-
sure; subsequently, a volumetric flux is introduced into the
network through specific nodes over a predetermined duration.

Adv. Intell. Syst. 2025, 2400694 2400694 (6 of 15)

The primary challenge lies in identifying topology and a set of
viscous resistances that drive the system toward a preferred equi-
librium from the potential equilibrium configurations. To
address this, we employ a global supervised learning approach,
which will be discussed later.

In the subsequent analysis, our focus shifts to networks
wherein the input nodes are subjected to prescribed boundary
conditions pressures. There, the objective transitions to deter-
mining a resistance configuration that aligns the pressures
and binary states at the output nodes with targeted values.
This process is facilitated through the utilization of a local super-
vised learning method.

2.3.1. Training via Global Supervised Learning Approach

Here, we present a methodology for determining a flow network
topology and resistance to perform multiple tasks using the same
acquired structure. To this end, our approach involves optimiz-
ing a global cost function for bistable flow networks.

In this context, we aim to use a training algorithm in order to
reach various equilibrium states based on different sets of sour-
ces (out of the 2V possible states). More specifically, assuming a
series of vectors {q" (t)}¥_,, for each vector q")(t) the system is

expected to converge to a (distinct) final state denoted by v, For
each vector q)(t), we establish a target volume vector vt(h).
The primary goal is to identify a particular Laplacian matrix
W (which represents the topology and the tubes’ resistance) that
guarantees the system’s convergence to the state closest to the
specified target state, for each task.

The volume state vector of the flow can be (implicitly) calcu-
lated through the time integration of the equation of motion (1),
that is,

v (1) = vy + /tq(h) (z)dr — W/tp(v(h) (r))dr (8)
0 0

Upon the system achieving a steady-state (or an equilibrium),
the  steady-state  volume vector is  calculated Dby
vy = lim,_ v (t). We note that for any Laplacian matrix W,
the relation of the total volume (2) holds. This can be easily dem-
onstrated by projecting the vector (8) onto 1y and utilizing the
fact that the sum of the columns of W equals zero. The require-
ment for the h* target vector is that VE? ) =1 N -vgh), ensuring
compliance with the overall volume constraint. The loss-function
is defined as the Euclidean norm of the volume state vector and

the corresponding target vector in the steady-state, namely
LSy
g:EZHvSS -2 9)
h=1

To determine a specific Laplacian matrix that ensures the sys-
tem’s convergence to the target state, we introduce the following
optimization problem:

minjmize L(W) + pl|W| 2
subject to Wy = W;; <0, i#j (10)
W]'N = ON
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where 0y denote the N-vector of all zeros entries and the positive
scalars f is a regularization parameter. The constraints ensure
that the trained Laplacian matrix (W) is valid and positive semi-
definite. A closed-form solution to the problem appears unattain-
able, primarily due to the non-convex nature of the problem and
the absence of an explicit presentation of the dynamic solution.
To address this, we have employed the projected gradient descent
algorithm (PGD) for a numerical approach to solving the optimi-
zation problem.[57] For more details, the reader is encouraged to
refer to Section C in the Supporting Information. Moreover, the
minimization problem outlined in (10) is addressed in Section G
in the Supporting Information by Algorithm 1. It should be noted
that the existence of a solution is not guaranteed. Furthermore,
even if a solution does exist, it is not necessarily unique.

The subsequent part showcases three numerical demonstra-
tions of networks where the training algorithm has successfully
converged. The elastic nodes are implemented as hyperelastic
balloons, parameterized by the Ogden model,*® which exhibit
a bistable pressure-volume relation. Key learning parameters,
including learning rate factor 7 = 0.1 (see Equation (S22) in
Supporting Information) and = 10>, were incorporated. The
system underwent a controlled introduction of constant flux
within specific time intervals to facilitate the attainment of equi-
librium. In both simulations, a reasonable constraint was applied
to limit the range of resistances in the model: tubes with a resis-
tance exceeding 5 (Pa s mm™>) were removed entirely, while the
minimum allowable resistance was set at 0.2 (Pa s mm™>).
During the learning process, resistances exceeding five times
the initial values were observed to behave similarly to models
where the corresponding tube was removed. Thus, these tubes
were omitted in order to simplify the network. On the contrary,
in order to avoid excessively low resistance values and negative
values, a lower threshold was established. While lower thresholds
extended the iterative process due to closer dynamics between
neighboring nodes, a threshold of one-fifth of the initial value
was chosen, as it provided a balance between computational effi-
ciency and result quality.

The first network contains a 5 x 5 lattice, consisting of 25
nodes (see Figure 3). This lattice was trained with a dual-task
objective: a distinct set of outlet nodes experienced a binary state
transition, resulting in the visual appearance of diagonal lines
below the input node. Meanwhile, the binary states of the
remaining internal nodes were set to “0”. In the second task,
when a single inlet node transitioned to binary state “1”, a spe-
cific set of target nodes also underwent a binary state transition to
“1”, resulting in the formation of a visual thombus around the
inlet node. Once more, the internal nodes maintained a state of
“0” (see Figure 3a). The second successfully trained network, also
comprising a 5 x 5 lattice of nodes, identifies the left column as
an input column. Each node in this column is assigned a specific
input number, from 1 at the top to 5 at the bottom. By introduc-
ing an influx in the input column and transitioning one of the
nodes to binary state “1”, the network’s task is to register the digit
of the nodes where the flow is inserted. The process involves acti-
vating the corresponding nodes to the binary state “1” while
keeping the other nodes in a state of “0” (see Figure 3b).

Further, each bistable node in the network can be viewed as a
binary digit, allowing the entire multistable PNN to function as a
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memory storage device—a concept applicable to any multistable
system. The primary challenge in such networks is to generate,
store, access, and use information at specific locations within the
network during computations. To address this, our algorithm
employs two signals spaced apart by a duration longer than
the network’s stabilization time, ensuring that after the first sig-
nal, the network reaches a stable equilibrium state that serves as
memory. Owing to the bistability property, following the initial
signal, the nodes that become inflated remain so even after dis-
connection from external inputs. In this intermediate configura-
tion, these nodes are fixed in binary state 1, while all other nodes
reside in binary state 0. Despite this distinction, all nodes main-
tain a uniform pressure, consistent with the conditions of physi-
cal equilibrium. In Figure 4 we demonstrate the results of this
approach, by utilizing memory during computation for multista-
ble PNNs that have been trained using the above-described global
learning algorithm. Two nodes form the input layer of this net-
work, which is followed by a 5 x 5 node lattice with two nodes
forming the final layer of the network. Two identical PNNs are
presented, highlighted with green and orange frames in
Figure 4b,c. Each of the identical PNNs receives a different initial
input flow signal. The inputs are identical in magnitude and
duration, but directed to different nodes, specifically to numbers
1 and 2 in the input layer of each structure. As soon as the sys-
tems have stabilized and reached equilibrium, they are then dis-
connected from external loads, retaining the embedded memory
of the initial input in column 4, (see Figure 4b). Following this
step, both networks receive the same secondary input signal
through node number 1, and are once again allowed to stabilize
(Figure 4c). Within the lattice, the equilibrium state of the first
network reveals a single column of nodes in the binary state “1”,
with all other nodes in the binary state “0”. In contrast, the equi-
librium state of the second network features two columns of
nodes in the binary state “1”, demonstrating that the network’s
response is affected by both the current, and previous inputs.

In Section F of the Supporting Information, we present a list
of viscous resistances derived from the simulations shown in
Figure 3 and 4.

2.3.2. Training via Local Supervised Learning Approach

Transport of materials in both biological networks, such as vas-
cular systems, and engineered counterparts, like microfluidic
networks, commonly rely on fluid flow. The pipes’ properties,
such as radii, conductance, and capacitance, collectively influ-
ence the network’s global material transport capabilities, making
it effective. Although computational optimization is a viable strat-
egy, many natural systems tend to adjust individual elements
based on localized feedback. In some instances, the flow within
pipes can interact with the mechanical characteristics of these
tubes, leading to localized adaptations such as constriction or
expansion. These adaptations serve to regulate local flow conduc-
tance and pipe capacitance, providing the network with a mech-
anism to control cargo distribution. For example, in Physarum
polycephalum, the thickness of tubes governs the organism’s
shape, enabling it to move, forage, and memorize features of
its environment.*"! Similarly, adaptive processes in other nat-
ural flow networks, such as those in leaves and vasculature,**%*!
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Figure 3. lllustration of two numerical simulations showcasing the learning capabilities of a metamaterial composed of a bistable flow network. The
elastic nodes are considered to be bistable elements characterized by a distinct non-monotonic pressure-volume relationship as described in Figure 1,
modeled as hyperelastic balloons, utilizing the Ogden model.*®! An initial volume of 1 cc indicates a stress-free elastic configuration (i.e., zero gauge
pressure). These balloons incorporate a bistable regime (between 0.8 and 1.1 Pa), transitioning from binary state “0” to “1” at a volume of 2.55 cc and
reverting from state “1” to “0” at 22 cc. Learning parameters included learning rate 7 = 0.1 and # = 1073. Steady-state convergence pressure was set at
0.9 Pa. A constant flux was introduced into the system during a specific period of time, allowing it to reach equilibrium. The initial viscous resistances were
set to unity. a) Results for the first network, indicating the obtained connection topology, colored by viscous resistance and thickness. The middle section
depicts the system results in equilibrium, highlighting the inlet and target balloons. The lower part shows volume changes over time (in blue) and the
entering flow (in red), obtained by numerical integration of (1) using ode45 in Matlab. Those nodes that do not snap to the binary state “1” remain nearly
at their initial volume, while others snap through in a sequence defined by the resistance configuration. Some snapped nodes exhibit so similar dynamic
responses that their graphs appear virtually indistinguishable. b) Figure results for the second network, which mastered five tasks, visually displaying the

digit representing the inserted flux’s entry balloon in the input layer.

operate through local rules, without a centralized controller.
Theoretical explorations of such flow networks have inquired
into their potential to learn diverse behaviors through local rules,
including classifying stimuli reminiscent of machine learning
principles.!®172627]

Here, we focus on bistable networks with sustained pressure
applied to their external nodes (as a boundary condition). These
systems always reach a stable steady-state, requiring a period of
relaxation. The main objective is to align the steady-state output
nodes’ binary states (and corresponding pressures) with the pre-
defined targets. During the training, inputs and outputs are spec-
ified. To achieve these desired output pressures, the learning
degrees of freedom of some tubes must be fine-tuned. The algo-
rithm designed for instructing the system to attain the prescribed
pressure has been described in the works ofl'”*’! for other
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applications under the assumption that networks maintain linear
relationships. Their algorithm is briefly described in Section D in
the Supporting Information. In the context of a bistable network,
however, it becomes imperative to modify the algorithm steps.
In the following discussion, key adjustments to the algorithm
are outlined.

Since the relation between pressure and node volume is com-
plex, nonlinear, and bistable, our initial emphasis is on making
sure each node’s binary state aligns with the target binary state,
representing the desired result. Subsequently, careful fine-
tuning of the viscous resistances ensues to guide the nodes to
the required pressure within the correct binary state. This algo-
rithm hinges on the memory property inherent in bistable
networks. The system converges to a stable steady-state at every
stage. This stable state serves as the initial condition for the
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Figure 4. Demonstration of bistable PNNs memory. a) The input layer of this network is composed of two nodes. The next layer is composed of
a5 x 5 node lattice, with two nodes as the final layer. We examine two identical topology structures presented in (a), highlighted with green and orange
frames in panels (b) and (c). b) Flow signals are directed to nodes 1 and 2 in each structure’s input layer. Once both networks have reached equilibrium,
c) both are given the same input signal through node number 1, and are allowed to stabilize again. There is one column of nodes in the binary state “1”
within the lattice of the first network, and all other nodes are in the binary state “0”. In contrast, the equilibrium state of the second network features two
columns of nodes in the binary state “1”, which indicates that the network’s response can vary significantly depending on history and, therefore, the initial
state.
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subsequent iteration of the learning. Through such a mecha-
nism, the system can attain unique convergence basins that
would not be possible without preserving intermediate states.
The pseudo-code for our learning algorithm can be found in
Algorithm 2 in Supporting Information.

Throughout the training regimen, changes to viscous resistan-
ces are executed through a comparative analysis of two distinct
flux states imposed on the same network by different boundary
conditions-denoted as free and clamped networks. In the free
state, the network attempts to accomplish the designated task
by applying input pressures, pgc, and subsequently producing
corresponding output pressures, pt;, and binary states for each
output node. In the clamped state, identical inputs are applied,
Pgc, but additional pressures are applied at the output nodes. In
this context, we distinguish two scenarios: when the binary state
of the node is not acceptable (i.e., does not meet the target binary
state), this node shall transition between the binary states.
Specifically, when transitioning the node from binary state “0”
to binary state “1”, the dictated pressure exceeds the local maxi-
mum point in the pressure-volume characteristic. Conversely,
when transitioning the node from the binary state “1” to “0”,
the dictated pressure is set below the local minimum point in
the pressure-volume characteristic. In cases where the binary
state of the output node is acceptable (i.e., meeting the target),
the dictated pressure follows the”?”) algorithm as described
in Section D in the Supporting Information. Moreover, applying
our local-learning algorithm involves numerically solving N non-
linear ODEs at each iteration. Networks with large sizes or high
resistance may experience inefficient computations or conver-
gence challenges. In Section E in the Supporting Information,
we describe our alternative algorithm for optimizing the training
methodology without repeating differential equation resolutions.

Below, we present three simulations showcasing the success
of the learning process for bistable flow networks utilizing the
aforementioned algorithm. Initially, we devised a disordered net-
work of nodes, randomly located in the plane, stipulating that the
minimum distance between adjacent nodes exceeds a predefined
threshold. The nodes were interconnected by tubes, ensuring
that each node was linked to up to the five closest nodes, under
the condition that the distance did not surpass a predefined
value. The (initial) viscous resistances of the network were
defined proportionally to the distance between nodes. We began
with an initial volume of 1 cc indicating a stress-free elastic con-
figuration (i.e., zero gauge pressure). In Figure 5, we illustrate
training outcomes for two networks comprising 150 nodes each
and another network with 100 nodes. In each simulation, the
input nodes were randomly designated (highlighted in blue),
and output nodes were also randomly selected (highlighted in
orange and yellow for two exit nodes, or yellow, orange, purple,
and green for four exit nodes). In the presented simulations, we
employed a theoretical bistable characteristic that correlates pres-
sure to the volume of nodes, approximating a simple trilinear
curve for simulation simplicity. This characteristic delineates
two distinct binary states: state “0” for volumes smaller than
5cc and state “1” for volumes greater than 9 cc (recall that the
middle branch, the spinodal, is unstable and is denoted by a
dashed line). The displayed error, labeled as Error, is defined
by the squared norm difference between the volumes obtained
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in the simulation and the volumes defined as the target. We
examine the difference between volumes rather than pressures
since the nodes are characterized by a trilinear curve, and track-
ing pressure does not uniquely describe the network’s state.

In the initial simulation, presented in Figure 5a, a network
comprising 150 nodes was defined. Two nodes were set to pres-
sures of 0 and 8 Pa, with two specific goals outlined: one node
aimed to achieve a pressure of 5 Pa and be in a binary state “1”,
while another node was to reach a pressure of 1Pa and be in a
binary state “0”. The algorithms of!'”*’! could be employed for
training in this scenario; however, the enhanced algorithm we
introduced significantly optimizes the learning process and
reduces the number of iterations needed for convergence. In
the initial iteration, the first output node (marked in yellow) con-
verged to an incorrect binary state regarding the target. However,
in the subsequent iteration, owing to our learning process, the
node converged to the desired state. Consequently, the error
is also discontinuously decreased, as expected during the
“snap-through” transition of the system through an unstable
branch. Figure 5a,b displays multiple panels, including pressure
as a function of time representing the pressures of the output
nodes. Other panels illustrate volume as a function of time, pres-
sure as a function of volume, and the error as a function of iter-
ations. Additionally, visualizations of the initial (untrained)
network and the final trained network are presented. The colors
of the tubes are mapped according to the scale of the viscous
resistances corresponding to those tubes, and the thickness is
proportional to the viscous resistance (i.e., greater resistance cor-
responds to smaller line thickness, and vice versa). Remarkably,
the network demonstrated successful training after only 30 iter-
ations in this simulation.

In the second simulation, we modified the target pressures to
lie within the bistable region of the pressure-volume curve, set-
ting them at 3 Pa. For one output node, we specified it to be in
binary state “0”, while for the second output node, it was set to be
in binary state “1”. Similar to the preceding simulation, the
success of the learning algorithm is evident, with the network
converging after only 128 iterations. Based on this simulation,
the learning process presented in this paper has several
strengths. Firstly, the capability of the first output node to reach
the binary state “1” and reside within the bistable region is
achieved exclusively through the system’s memory feature.
This highlights the indispensability of this feature for attaining
the requisite state. Additionally, the algorithm successfully dis-
criminates between the distinct binary states of the nodes, even
when the target pressures are identical.

In the third simulation, we present the training results of a
100-node network tasked with achieving four goals. The objec-
tives incorporate elements from the two prior experiments,
requiring two output nodes to reach pressures of 1 and 5 Pa,
and an additional two output nodes to attain identical pressures
of 3 Pa but at different binary states. Furthermore, three input
nodes were defined in this simulation with applied pressures
of 7 and 8 Pa. In Figure 5c, we depict slightly different panels
than before, showcasing pressure and volume as functions of
the iteration number. Each point in the graph represents the
pressure (or volume) to which the system has converged in a
steady-state. Specifically, in the first iteration, the four outlet
nodes reached pressures higher than required. Consequently,
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Figure 5. Illustration of three numerical simulations demonstrating the local-learning algorithm of a bistable flow network. For the simulation, we set the
parameters n = 0.25, y = 0.01, and defined the convergence when the error reaches 10~". Theoretical bistable characteristics, simplifying to a trilinear
curve, were employed for simulation. The unstable spinodal is denoted by a dashed line. The Error indicates the squared norm difference between
simulated and target volumes. The first learning iteration is indicated by the notation s = 0. a,b) Illustration of training outcomes for two 150-node
networks, in which blue nodes represent input nodes, and orange/yellow output nodes aim to reach specified pressures and binary states. Gray lines
represent supervisor pressure constraints. A series of panels shows the training process through pressure-time, volume-time, pressure—volume, and
error iterations. Visualization includes initial and final networks, with tube colors and thickness indicating viscous resistance. c) Results of a 100-node
network achieving four targets are presented, with each point representing the converged steady-state pressure or volume.
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Figure 6. Numerical simulation conducted on a grounded network with 150 nodes and five inputs, aimed at training the output node for multiple tasks
with varying inputs. The elastic characteristic (pressure-volume relationship) of each node corresponds to the profile depicted in Figure 5. Parameters
were set as 77 = 0.25, y = 0.01, with convergence defined by an error threshold of 5 x 107", where “Error” denotes the mean of squared norm difference
between simulated and target volumes for each task. Constant inlet pressure was maintained at 8 Pa (and 0 Pa), while other inlets varied between 2, 3, 4,
and 6 Pa, targeting output volumes of 2, 3, 4, and 15 cc®, respectively. Blue nodes indicate inputs, with the orange output node reflecting the aim to
achieve specified pressures and binary states. Both initial and final network states with variations in vortex colors and thickness illustrate changes in

viscous resistances.

during the learning process, two abrupt transitions were exe-
cuted to attain appropriate binary states (from “0” to “1”), dem-
onstrated by the sharp jumps in the volume graph for output
nodes 1 and 2 and the Error graph. This simulation also demon-
strates excellent convergence of the learning algorithm, indicat-
ing success in training a bistable flow network to accomplish
multiple tasks.

Finally, Figure 6 showcases the outcomes of a simulation con-
ducted on a grounded network comprising 150 nodes with five
inputs. This simulation aims to train the output node to execute
multiple tasks under varying inputs. Accordingly, one inlet pres-
sure was maintained constant across all tasks at 8 Pa, while the
pressures at the other four inlets were adjusted task-specifically
to 2, 3, 4, and 6 Pa. Correspondingly, the targets for the output
node’s volume were set at 2, 3, 4, and 15 cc’ for each input pres-
sure. An epoch in this context was structured around four learn-
ing iterations, with the network undergoing simultaneous
training across all tasks. The modification in resistances required
for accomplishing each task was computed, and the adjustment
implemented in each epoch represented the average of these cal-
culated modifications. The simulation evidenced convergence
after 500 epochs.

3. Discussion and Concluding Remarks

In this work, we combined multistability with the concept of
physical neural networks and studied the properties of such
physical systems. This illustrates a paradigm where mechanical

Adb. Intell. Syst. 2025, 2400694 2400694 (12 of 15)

systems mimic the versatile, task-specific functionality character-
istic of digital neural networks in the realm of artificial intelli-
gence. The discussion below summarizes the current work
and presents the broader implications of our findings.

Our focus was on bistable flow networks. Flow networks are
characterized by internal, external, and output nodes, facilitated
by either constant pressures or volumetric flow rates. The bista-
ble nature of each network element, presenting a nonlinear
pressure-volume relationship and two distinct states of positive
stiffness (“0” and “1”), enables the versatility and adaptability of
this system. We examined the network’s potential equilibrium
configurations or steady-states, analyzed their stability, and
harnessed the complex dynamic behavior of the system.

The analysis of the network’s steady-states and the stability of
its states highlights that, in scenarios devoid of external flux or
prescribed pressure, the network will reach a state of pressure
equilibrium regardless of its topological configuration.
Conversely, when external pressures are introduced, the resul-
tant steady-state pressures are determined by the interplay
between the network’s topology and the resistances within its
connecting tubes. Although the existence of steady-state config-
urations may be contingent upon these parameters, the stability
of the network at a steady-state was found to be invariant with
respect to both topology and resistance values. This insight
underscores the robustness of such networks against structural
and operational variabilities.

Even though one might assume that a particular configuration
of the network might achieve a desired equilibrium or
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steady-state, complexity increases as the number of tubes exceeds
the number of nodes. This gap renders the transformation inde-
terminate, lacking a single-valued definition. Consequently, it
remains unclear whether a consistent and desirable transforma-
tion can always be established between a set of constraints and
steady-states. This uncertainty highlights the complicated rela-
tionship between network architecture and its operational
dynamics.

Having studied the equilibrium dynamics and stability of such
networks, we investigated their complex dynamics under the
control of inlet volumetric flux, which was specified for a limited
duration, and revealed the network’s ability to adopt distinct
binary states that are influenced by its topological structure.
This stage emphasized the challenge of identifying a configura-
tion of network topologies and resistances to guide the system
toward a desired equilibrium state. A global supervised learning
algorithm was used to address this challenge.

The obtained outcomes showcase a pioneering concept that
can be leveraged in soft robotics actuation and microfluidics
applications, particularly in scenarios involving pressurized flow
within cavities embedded in elastic bodies. The conventional
approach to achieving complex deformation patterns involves
the intricate control of multiple inputs, adding complexity to
the system’s operation.>**3¢*~7! Thus, significant interest exists
in simplifying the control of such systems.”>”"”) In our work, we
introduce a novel result demonstrating single-input control over
a lattice composed of bistable elastic chambers. Innovative soft
actuator technology holds considerable promise for the develop-
ment of soft actuators with streamlined and efficient control
mechanisms,?>3*36.6478]

Next, we applied a local supervised learning method. This
training strategy, drawing upon the mechanical attributes of
the network’s elements, enables the network to progress toward
defined operational objectives. This part of our study reveals the
potential of these networks to perform an array of tasks—such as
interpolations, regressions, sorting, and classification—using
purely mechanical networks.

Further, this research highlights the network’s ability to
function as a memory storage system. Each bistable node within
the network operates as an independent data storage unit.
Consequently, every stable equilibrium configuration effectively
acts as a “stored memory”, allowing the network to maintain the
last reached state, even when disconnected from any external
inputs. This characteristic facilitates the pre-setting of the net-
work to diverse equilibrium states under uniform inputs by
pre-encoding memories. This capability not only enhances the
adaptability of the network but also broadens its applicability
across various computational scenarios. We demonstrated how
the network can write data to a memory storage. By utilizing this
property, bistable PNNs have the potential to perform computa-
tions that involve storing information as memory and using it in
subsequent computations.

While fabricating a physical demonstrator is beyond the scope
of this work, our sensitivity analysis of the network’s response to
defects reveals that the training algorithms continue to succeed
even with up to 20% randomized variability in bistable character-
istics, despite relying on an algorithm that assumes perfectly
identical node properties.
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Our research yielded significant results but also faced
several limitations. Physical limitations on resistance values—
preventing them from being negative or approaching zero—
imposed constraints that sometimes restricted convergence.
Another challenge arose from the non-convex optimization
model (10), as the pressure-volume bistability introduced
nonlinearities, causing discontinuities in the loss and error func-
tions. This made it difficult to rely on convergence diagrams to
predict model performance. The global learning approach is lim-
ited in driving autonomous adaptation within a physical network
for two primary reasons. First, adjusting each tube’s conductance
explicitly depends on the flux through all other tubes, regardless
of their distance, requiring a network-wide scope. Second, the
loss function is directly tied to the desired response, meaning
that if the network were to compute the gradient, it would need
to encode information about that target response. These con-
straints reveal that this approach requires intervention by an
external designer and cannot be classified as a truly autonomous,
physical learning process. Further, in testing with a 5 x 5 node
lattice network (Figure 3), we chose to enable full connectivity
among all nodes, deviating from the typical layered structure
of classical neural networks. Our strategy of connecting each
node to every other node in the network was observed to provide
greater flexibility and a more dynamic representation of the data
during training. By using this approach, the model is able to cap-
ture more complex relationships and interactions between the
nodes. Future research may explore alternative connection strat-
egies. We noted that attempts to enforce traditional layered
connectivity led to model convergence issues. Based on our
numerical investigations, training both smaller and larger net-
works was successful. However, a thorough investigation into
the sensitivity of network performance to variations in the num-
ber of nodes and tubes is left for future research. In later stages,
where networks were trained for specific pressure targets using a
local supervised learning approach, disordered networks (with-
out structured patterns) outperformed ordered ones, and net-
works with 5-6 node connections achieved better training
outcomes than those with fewer or more connections, suggesting
an optimal connectivity range.

Although some limitations were discovered, our work has
the potential to drive important innovations in smart technolo-
gies, soft actuations, bistable structures, and other areas.
Furthermore, our research lays foundational stones toward the
realization of computational matter, marking the advent of learn-
ing matter. The findings of this study mark an important mile-
stone, signaling new opportunities for future investigation.
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