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a b s t r a c t

Shape-morphing airfoils are of interest due to their benefits for aerodynamic efficiency
and commonly involve chordwise elasticity of the airfoil. We aim to examine the
influence of chordwise elasticity on the aerodynamic properties and stability in the
quasistatic limit. We model a shape-morphing airfoil as two, rear and front, Euler–
Bernoulli beams connected to a rigid support at an arbitrary location along its chord.
This setup is mounted on a torsion spring and is exposed to a uniform flow. We model
aerodynamic forces acting on the wing via thin airfoil theory and obtain the solution of
the elastic deflection via regular asymptotic expansions. Then, we substitute this result
into the moment balance equation to find the rotation angle. This procedure allows us
to examine the influence of chord-wise elasticity on the lift, aerodynamic center, twist
angle, and the onset of divergence. We examine these results in terms of the elastic axis
location and the dimensionless ratio between aerodynamic moment to bending stiffness.
The lift curve slope is smaller than 2π up to the hinge location of about 0.53 chord and
is greater than 2π elsewhere. The chord-wise elasticity moves the aerodynamic center
forwards and increases the twist angle. In addition, chord-wise elasticity is found to
increase the onset of divergence relative to the rigid case. Moreover, unlike the rigid
case, divergence also exists for hinges in the front quarter chord. Finally, we present
several possible cases of an actuated airfoil validated by numerical simulations.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Quasistatic aeroelasticity is concerned with physical phenomena which include an interaction of aerodynamic and
lastic forces. The classic literature commonly uses a simplified aeroelastic model consisting of a rigid airfoil mounted
n a torsional spring. The spring stiffness represents the supporting beam’s span-wise elasticity. In recent years, various
esearchers studied the effects of chord-wise aeroelasticity, which is common in biology, energy harvesting, and in the
ontext of morphing airfoils (meaning wings sections that change their shape continuously) (MacPhee and Beyene, 2016;
ang and Dowell, 2018; Tiomkin and Raveh, 2017). Currently, shape-morphing airfoils are studied due to their potential
o enhance the performance of aircraft structures and energy harvesting systems (see Moosavian et al., 2017; Nguyen
t al., 2015; Takahashi et al., 2016, among others).
There are many approaches in the literature to fabricate wings with shape-morphing capabilities. These include

iezoelectric actuation, shape memory alloys, pneumatic artificial muscles, and deployable and foldable structures (see
etailed discussions in Barbarino et al., 2011; Thill et al., 2008 and references therein). The realization of shape-morphing
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Fig. 1. Illustration of the examined configuration. w0 (dashed line) is the airfoil’s camber at rest. The dotted line represents the rotation of the
hord by δ, so that the dashed–dotted line is the undeformed rotated camber. w (solid line) is the total camber (including elastic deformations).
he black rectangle and blue spiral represent the support beam, located at the elastic axis xEA , and its span-wise rotational stiffness, k. The airfoil is
ufficiently thin to allow the use of the thin airfoil theory and Euler–Bernoulli beam approximations. . (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)

irfoils is commonly accompanied by reduced chord-wise rigidity, which may dominate the aeroelastic response of the
tructure for sufficiently soft airfoils. Various (mainly numerical) studies examined the wings’ dynamic response and
tability for flags in uniform flow (Alben, 2015, 2008; Eloy et al., 2008; Manela and Howe, 2009; Mougel et al., 2016),
nverted flag (Gilmanov et al., 2015; Gurugubelli and Jaiman, 2015; Kim et al., 2013; Sader et al., 2016a,b), or membrane
onfigurations, which provide greater lift and better lift slopes (Buoso and Palacios, 2015).
In this work, we aim to analyze the effects of chord-wise elasticity on classic calculations of airfoils in potential flow.
e achieve this by modeling this configuration as two cantilever beams, coupling elastic deformations with aerodynamic

orces obtained by thin airfoil theory, and introducing a general actuation term into the governing equation. The presented
esults provide a theoretical framework for the quasistatic properties of shape-morphing soft airfoils.

. Problem formulation and scaling

We examine the stability and quasistatic response of an elastic two-dimensional airfoil in external potential laminar
low. The airfoil’s elastic deformation is modeled by the Euler–Bernoulli equation, which is coupled to aerodynamic forces
alculated by thin wing theory. This approach is traditionally justified under the assumption of small camber fluctuations
uring the motion of the airfoil, as well as a small airfoil thickness ratio (see, for example, Dowell, 1974).
The examined configuration is illustrated in Fig. 1. We denote w0(x) as the camber at rest, de(x) as the elastic

eformation due to aerodynamic forces and da(x) as the forced actuation of the elastic airfoil, total deformation from
he initial state is d(x) = de(x) + da(x) and total camber is w(x) = w0(x) + d(x). Chord-length is denoted by c , and the
x-coordinate is defined by the edges of the camber at rest so that w0(0) = w0(c) = 0.

The airfoil is mounted on a torsional spring with a constant k at the elastic axis, which is located at an arbitrary point
= xEA. The total aerodynamic angle-of-attack, α, is the sum of the initial angle-of-attack (untwisted spring) α0, plus the

ncrement due to elastic twist, δ,

α = α0 + δ. (1)

Therefore, the velocity far from the airfoil is (u∞ cos (α0) , u∞ sin (α0)), and the total displacement is defined as the
uperposition of rigid body rotation and elastic deflection d̃, viz

d(x) = δ · (xEA − x)+ d̃(x). (2)

The elastic deformation of the airfoil can be described by the Euler–Bernoulli equation

d2

dx2

[
s
d2

dx2
(w − w0 − da)

]
= ∆p, (3a)

here s denotes stiffness per unit length, and ∆p is the quasi-steady aerodynamic load, given by (Johnston, 2004)

∆p = 4q∞

{[
α0 −

1
π

∫ π dw

dx
dϕ

]
cot

(
θ

2

)
+

∞∑[
2
π

∫ π dw

dx
cos (nϕ)dϕ

]
sin (nθ)

}
, (3b)
0 n=1 0

2



N. Chen and A.D. Gat Journal of Fluids and Structures 119 (2023) 103903

w

f

f

d
d
a
s

w
f

b

I

a

a

here q∞ = ρ∞u2
∞
/2 is the freestream dynamic pressure, and the auxiliary coordinate θ (and similarly ϕ) is defined

by x = c [1 − cos (θ)] /2. In addition to the elastic equation, a moment balance must be satisfied. Writing the moment
balance w.r.t. xEA (⟳) is giving

kδ =

∫ c

0
(xEA − x)∆pdx. (3c)

For convenience, we henceforward use the following shortening notations. The first is

L ⟨F⟩ (θ) =

[
−

1
π

∫ π

0
(F)ϕ dϕ

]
cot

(
θ

2

)
+

∞∑
n=1

[
2
π

∫ π

0
(F)ϕ cos (nϕ)dϕ

]
sin (nθ) , (4a)

or an aerodynamic load (spatial function of coordinate θ ) due to slope F , and

MxEA ⟨F⟩ =

∫ π

0
[cos (θ)− cos (θc)]L ⟨F⟩ (θ) sin (θ)dθ, (4b)

or an aerodynamic moment about xEA due to slope F .
Hereafter, uppercase letters denote normalized variables, and asterisk superscripts denote characteristic values (i.e., the

normalized function F , is defined by F = f /f ∗, where f ∗ is the characteristic value of the dimensional function f ). We
efine the normalized axial coordinate X = x/c , normalized camber at rest W0 = w0/w

∗

0 , normalized total elastic
eflection and due to actuation D = d̃/d̃∗ and Da = da/d̃∗, normalized initial angle-of-attack α̃0 = α0/α

∗

0 and rotation
ngle ∆ = δ/δ∗, normalized dynamic pressure Q∞ = q∞/q∗

∞
, normalized elastic bending stiffness S = s/s∗ and rotational

pring stiffness K = k/k∗.
Substituting normalized variables, along with (1) and (2) into (3), the order-of-magnitude analysis yields

α∗

0, δ
∗

∼
s∗d̃∗

4q∗
∞
c4
, k∗

∼ q∗

∞
c2. (5)

Hence, using the shortening notations (4), the normalized governing integrodifferential equations are

d2

dX2

[
S
d2

dX2 (D − Da)

]
= Q∞

[
(α̃0 +∆) cot

(
θ

2

)
+ΠL

⟨
dW0

dX

⟩
(θ)+ εL

⟨
dD
dX

⟩
(θ)

]
, (6a)

and [
K − 2π

(
XEA −

1
4

)
Q∞

]
∆ = Q∞

{
2πα̃0

(
XEA −

1
4

)
+ΠMXEA

⟨
dW0

dX

⟩
+ εMXEA

⟨
dD
dX

⟩}
, (6b)

hereΠ is a dimensionless ratio, represents aerodynamic forces due to camber curvature at rest, scaled by elastic bending
orces, which are defined by

Π =
4q∗

∞
c3w∗

0

s∗d̃∗
. (6c)

The additional parameter, ε, represents the ratio of aerodynamic forces due to camber deformation, scaled by elastic
ending forces,

ε =
4q∗

∞
c3

s∗
. (6d)

n the limit of small elastic deformations (coherent with EB beam assumptions), ε ≪ 1.
The governing integrodifferential equation (6a) is supplemented by zero deflection and zero slope boundary conditions

t XEA,

(D − Da)|XEA =
d (D − Da)

dX

⏐⏐⏐⏐
XEA

= 0, (7a)

s well as by zero moment and zero shear at X = 0 and X = 1,

d2 (D − Da)

dX2

⏐⏐⏐⏐
Xb

=
d

dX

[
S (X)

d2 (D − Da)

dX2

]⏐⏐⏐⏐
Xb

= 0, Xb ∈ {0, 1} . (7b)

3. Results

We derive the solution for the final airfoil configuration (rigid-body rotation and elastic deflection) by solving the
elastic equation for an arbitrary ∆ and substituting the solution D in the moment balance equation (6b). Thus, we express
∆ as a function of the problem’s parameters.
3
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.1. Elastic equation solution

To overcome the complexity of the integrodifferential equation, we expand the elastic deformations asymptotically,
sing the small parameter defined in (6d),

D =

∞∑
n=0

εnDn. (8)

Substituting the expansion into (6a), yields the leading-order equation governing D0

d2

dX2

[
S
d2

dX2 (D0 − Da)

]
= Q∞

[
(α̃0 +∆) cot

(
θ

2

)
+ΠL

⟨
dW0

dX

⟩
(θ)

]
, (9a)

nd higher-order O (εn) equations governing Dn are given by

d2

dX2

[
S
d2Dn

dX2

]
= Q∞L

⟨
dDn−1

dX

⟩
(θ) . (9b)

Thus, we convert the single integrodifferential equation into ordinary differential equations. The leading-order bound-
ary conditions for D0 are identical to (7). Higher-order equations are supplemented by the homogeneous boundary
conditions

Dn|XEA =
dDn

dX

⏐⏐⏐⏐
XEA

=
d2Dn

dX2

⏐⏐⏐⏐
Xb

=
d

dX

[
S
d2Dn

dX2

]⏐⏐⏐⏐
Xb

= 0, Xb ∈ {0, 1} . (10)

Since the integrals in (9a) depend on known terms, D0 may be computed by direct integration with respect to X . Due
to the clamping condition at X = XEA, (7a), the airfoil curvature is discontinuous, while the slope is continuous. Applying
the boundary conditions at the free-ends, (7b) the leading-order curvature of elastic deflection is obtained. Dividing it
by S (X), integrating and applying (7a), we obtain the leading-order normalized slope as the linear combination of each
contribution to it, shortly denoted as

dD0

dX
=

Q∞

4
(α̃0 +∆)A (θ)+

Q∞

4
ΠF

{
dW0

dX

}
(θ)+

dDa

dX
. (11)

he explicit expressions for the spatial functions in θ , A and F, are given in Eqs. (A.1) to (A.3) in Appendix A. Using this
writing convention, higher-orders solutions thence can be written as

dDn

dX
=

Q∞

4
F

{
dDn−1

dX

}
(θ) , (12a)

hich may be readily generalized into

dDn

dX
=

(
Q∞

4

)m

F
(m)
{
dDn−m

dX

}
(θ) , ∀n ≥ m. (12b)

.2. Influence of chord-wise elasticity on span-wise twist

We substitute the solution for D in the moment balance Eq. (6b). That way, ∆ can be extracted as a function of the
nown parameters of the problem. Upon substitution,

∆ =

[
2π
(
XEA −

1
4

)
+

εQ∞

4 MXEA ⟨S ⟨A⟩⟩
]
α̃0 + MXEA

⟨[
dW0
dX +

εQ∞

4 S

⟨
F

{
dW0
dX

}⟩]
Π + εS

⟨
dDa
dX

⟩⟩
K/Q∞ − 2π

(
XEA −

1
4

)
−

εQ∞

4 MXEA ⟨S ⟨A⟩⟩
, (13a)

where S is short for

S ⟨f ⟩ = f (θ ) +

∞∑
n=1

(
Q∞ε

4

)n

F
(n)

{f (θ )} . (13b)

As expected, in the limit ε → 0 (i.e., s∗ → ∞), (13) degenerates into the classic (rigid case) solution. Additionally,
he actuation term appears with the coefficient ε, namely, spatial actuation does not affect the leading order but higher
rders.
Table 1 presents numerical validation results for (13), achieved by COMSOL Multiphysics

®
. The numerical model used

s described in Appendix B. To demonstrate the influence of chord-wise elasticity on the twist angle, we focus on the ratio
etween the (dimensional) twisting angle δ in the elastic case to the rigid case, denoted hereafter R . To isolate elasticity
δ

4
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Table 1
Heatmap of the model accuracy in predicting the elasticity influence on the rotation angle. The ratio between
the twisting angle δ in elastic case and δ in rigid case represents the elasticity influence on the twist an-
gle. The values in the table were obtained by dividing this ratio’s analytic value by the ratio’s numeric value
for each combination of initial angle-of-attack and torsional spring stiffness, see (14). The mean absolute error is
1.6%.

influence, regardless of the calculation method, we take the analytic results for Rδ , and divide them by the corresponding
OMSOL results for Rδ , reads

Rδ,model

Rδ,COMSOL
=

(
δelastic/δrigid

)
model(

δelastic/δrigid
)
COMSOL

. (14)

The results are presented as a heatmap in Table 1 for 0.5 [◦] ≤ α0 ≤ 4.5 [◦] and 5 [kN m/rad] ≤ k ≤ 8 [kN m/rad].
The mean absolute error is 1.6%, and the maximal absolute error is 6.5% (for the extreme combination of α0 = 4.5 [◦] and
k = 5 [kN m/rad], were nonlinear effects increase, see Appendix B). The results show that our model nicely captures the
elasticity influence on the rotation angle.

3.3. Static instability - divergence

In a similar manner to classic static aeroelasticity, the divergence dynamic pressure is obtained when the denominator
of the solution for ∆ vanishes (Dowell et al., 2005). We begin with the leading-order solution for the elastic equation,
(11). Taking the denominator in (13) and rearranging it, we obtain a quadratic equation for divergence dynamic pressure
ratio, elastic to rigid,

MXEA ⟨A (θ)⟩[
2π
(
XEA −

1
4

)]2 Kε
4

(
Q∞,d

Q∞,d,r

)2

+
Q∞,d

Q∞,d,r
− 1 = 0, (15)

here Q∞,d,r = K/2π
(
XEA −

1
4

)
is the normalized divergence dynamic pressure for the rigid case [which is readily

btained from the denominator in (13) while taking the limit ε → 0], and εK/4 = kc/s∗ is a dimensionless ratio of
the torsional spring stiffness and elastic stiffness. This ratio multiplies a term depending only on XEA, so that the solution
depends solely on two dimensionless parameters. The (single) positive root for each combination of these parameters
(where MXEA ⟨A (θ)⟩ was calculated for NACA 4-digit airfoil thickness distribution) is shown in the contour map presented
in Fig. 2 for the range 1/4 ≤ XEA < 1, the validity range of Q∞,d,r . For the limit s∗ → ∞, the elasticity influence
s negligable, thus the ratio Q∞,d/Q∞,d,r approaches 100%, as expected. Likewise, for XEA → 1/4 the ratio Q∞,d/Q∞,d,r
pproaches 0 since Q∞,d,r approaches infinity. However, the entire map presents values smaller than 100%, which means
hat the elasticity increases the divergence onset. For each value of kc/s∗, the highest ratio is obtained at XEA ≈ 0.44.
here, the effect of elasticity on the divergence onset is the smallest; the divergence condition is the closest to the rigid
ase with the same torsional spring stiffness. There is no actuation term in (15); a distributed actuation cannot delay or
ancel divergence only by applying a direct moment.
5
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Fig. 2. Contour map of the divergence dynamic pressure ratio (elastic to rigid), Q∞,d/Q∞,d,r . The results are presented as the function of the elastic
xis location and the ratio of the torsional spring stiffness and elastic stiffness. The results are presented for XEA > 1/4, the rigid case range of
alidity. The ratio approaches 100% for negligible elasticity and zero at quarter-chord since the divergence dynamic pressure for the rigid case is
nfinite. The effect of elasticity on the divergence onset is the smallest at XEA ≈ 0.44.

We extend the results for XEA < 1/4 by rearranging the denominator in (13) into

εK
4

MXEA ⟨A (θ)⟩

(
Q∞

K

)2

+ 2π
(
Xc −

1
4

)
Q∞

K
− 1 = 0. (16)

The log of the (sole) positive root of Q∞/K = q∞c2/k for each combination of the abovementioned parameters is
shown in Fig. 3 [dimensional solution for the divergence airspeed is given in Eq. (A.5)]. As can be seen, for XEA < 1/4
there are much higher values than for XEA > 1/4, i.e., the aerodynamic moment is much higher than torsional stiffness.
The classic (rigid) aeroelasticity theory states that divergence cannot occur if the elastic axis is at the front quarter-chord.
However, for sufficiently chord-wise elasticity, there exists a physical solution for divergence even XEA < 1/4, i.e., the
denominator in the solution for ∆ vanishes.

Next, we examine the leading- and first-order solution. Taking the denominator and rearranging it as for (15), we
obtain a cubic equation for divergence dynamic pressure ratio, elastic to rigid,(

Kε
4

)2
MXEA ⟨F {A (θ)}⟩[
2π
(
XEA −

1
4

)]3 ( Q∞

Q∞,d,r

)3

+
MXEA ⟨A (θ)⟩[
2π
(
XEA −

1
4

)]2 Kε
4

(
Q∞

Q∞,d,r

)2

+
Q∞

Q∞,d,r
− 1 = 0. (17)

However, the results obtained are very close to those of the leading-order, given in Fig. 2; the additional order
contribution is less than 1%. Nevertheless, one may observe that the camber contribution does not appear in (13)’s
denominator; the airfoil shape affects implicitly via the spatial deflection stiffness, S (X) (see explicit expressions in
ppendix A). For comparison, Appendix C contains graphical results calculated for uniform spatial stiffness (i.e., S ≡ 1).
ee Fig. 7.

.4. Influence on aerodynamic properties

In this section, we examine the role of chord-wise elasticity on lift and pitching moment. For that aim, we substitute
he approximations for the elastic deflection and twist angle, (12) & (13), into (3b), yielding the aerodynamic distributed
oad for an elastic airfoil. The solutions obtained are governed explicitly by the dimensionless ratio between aerodynamic
oment and bending stiffness, Q∞ε/4, and implicitly by XEA and S [via A and F, see (A.1) to (A.3)]. The results are presented

as a function of these parameters, where we calculated A and F for NACA 4-digits airfoil thickness distribution.
Integrating the aerodynamic load over the airfoil yields the lift coefficient

cl = 2πα + 2
∫ π

0

(
dw0

dx
+
dd̃
dx

)
[cos (φ)− 1]dφ. (18)
φ

6
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Fig. 3. Normalized divergence dynamic pressure to normalized rotational spring stiffness, ln
(
Q∞,d/K

)
. The ratio Q∞,d/K is equivalent to dimensional

divergence dynamic pressure, normalized by k/c2 . The significance and innovation of the results are that there exists a physical solution for divergence,
even for XEA < 1/4, unlike the rigid case. The physical condition for this is that the aerodynamic moment is much higher than the torsional stiffness.

The aerodynamic load is determined by both angle-of-attack and camber slope, as (18) indicates. Using (12) & (13), one
may examine the influence on the lift of each problem parameter. However, the initial camber has a constant contribution,
while the angle-of-attack usually changes during flights. Hence, a more meaningful property is the lift curve slope, cl,α .
Differentiating (18) w.r.t. α gives

cl,α = 2π + 2
Q∞ε

4

{∫ π

0
S ⟨A⟩ [cos (φ)− 1]dφ

}
. (19)

To examine whether exists an aerodynamic center (viz., location for which the pitch moment is independent of angle-
f-attack), we write the moment term for an unknown aerodynamic center location, xAC , then take the derivative w.r.t. α
nd compel it to be zero:

∂MAC

∂α
=

∂

∂α

∫ c

0
∆p (x − xAC )dx = 0. (20)

Using the relation cos (θAC ) = 1 − 2XAC , we obtain the aerodynamic center as

XAC =

π
2 −

Q∞ε
4

∫ π
0 S ⟨A⟩

[
1 − cos (φ)− sin2 (φ)

]
dφ

2π −
Q∞ε
2

∫ π
0 S ⟨A⟩ [1 − cos (φ)] dφ

. (21)

As expected, the solutions degenerate into the classic solutions for rigid cases, i.e., cl,α
−−−→
ε → 0 2π and XAC

−−−→
ε → 0 1/4.

Fig. 4 serves graphical results of (19) and (21), calculated for NACA 4-digits airfoil thickness distribution. For
convenience, the results are normalized by the rigid cases’ values. Fig. 4a shows that the elastic axis location in the
fore half chord slightly decreases the lift line slope. However, for XEA > 0.53 chord-wise elasticity increases the lift curve
slope. Fig. 4b shows that chord-wise elasticity brings the aerodynamic center slightly forward, as in cambered airfoils.
Those effects surge for XEA > 0.85. For comparison, see corresponding results, calculated for uniform stiffness (Fig. 8 in
Appendix C).

3.5. The use of actuation in the limit of negligible airfoil twist

In this section, we present some practical applications of actuated shape-morphing airfoils. For simplicity, we take the
imit where k → ∞, (3c) compels δ → 0, hence α ≡ α0, d ≡ d̃; This limit is equivalent to replacing the spring with a
ixture, and (6b) is no longer valid.

Each of the results presented in this section is accompanied by an illustrating case, solved by numerical simulation.
he specific method in which actuation is achieved is not essential to the analysis, and here we arbitrarily chose camber
ctuation by a distribution of pressurized internal chambers, commonly used in the field of soft robotics. Such an
7
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Fig. 4. Influence on aerodynamic properties. The results are presented as the function of the elastic axis location and the ratio between aerodynamic
moment and bending stiffness, calculated for NACA 4-digits airfoil thickness distribution. Panel (a) presents the lift curve slope deviation from 2π ,
l,α/2π . The slope increases as XEA moves backward and exceeds 2π at XEA ≈ 0.53. Panel (b) presents the aerodynamic center location deviation
rom the quarter chord, xEA/ (c/4). The values are smaller than 100%, i.e., chord-wise elasticity brings the aerodynamic center forward.

ctuation approach is known as embedded-fluidic-networks or pneumatic-artificial-muscles (Thill et al., 2008). Results
nd discussions are presented below. Details concerned with the numerical model, physical and geometric parameters,
nd the actuation method can be found in Appendix D.
An explicit expression for the steady deflection of a uniformly actuated airfoil was obtained using (11) and (12), with

dditional integration and application of the clamping boundary conditions (7a). Results for the steady deflection of a
niformly actuated airfoil are presented in Fig. 5a, which compares the difference between the numerical calculation
n and the analytic results wa. The channel distribution is presented at the insert. Difference between the results is
resented for no-correction (smooth line), leading-order correction (dashed line), and first-order correction (dotted line).
he asymptotic scheme clearly reduces the discrepancy between the analysis and the numerical computation by increasing
he order of the correction terms.

For known fluid and airfoil properties, a non-uniformly distributed actuation can be applied to achieve reduced
eroelastic deflection of soft airfoils or to create a transition between two predefined cambers. By setting the deformation
and solving for the actuation D , it is possible to solve (6a) without applying the asymptotic expansion (8).
a
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Fig. 5. Illustrative examples for actuation. Small inserts depict the shape of the airfoil and the layout of an embedded-fluidic-network actuation
mechanism spaced along its chord (see circles), as presented in Appendix D. Panel (a) presents results for the asymptotic expansion in the form of the
spatial error of the leading and first orders compared with the numerical solution (wa denotes the analytic solution, wn the numerical calculation),
he actuation network is spaced uniformly along the chord. Panel (b) presents the case of cancellation of aeroelastic deformation using embedded
ctuation. The dotted line and red airfoil insert show the steady-state, unactuated, aeroelastic deflection. The actuated camber (solid line) is based
n a channel layout designed to deform the airfoil into its original form (dashed line). Good agreement is achieved in this case between the original
nd actuated airfoil shapes. Panel (c) presents the results of applying embedded actuation to transform a NACA-2412 airfoil into a NACA-4412 airfoil
modification of camber). Good agreement in airfoil shape is shown between the analytic and numerical solutions (destination airfoil shown in red
nsert).

Cancellation of steady aeroelastic deflection by distributed actuation is immediately calculated from (6a) by setting
= 0, yielding dDa/dX by

dDa

dX
= −

Q∞

4
(α̃0 +∆)A (θ)−

Q∞

4
ΠF

{
dW0

dX

}
(θ) , (22)

nd the additional integration coefficient is obtained from clamping boundary conditions (7a). Fig. 5b presents deformation
ancellation, which determines the required actuation, and, thus, the geometry of the chambers (see insert). The camber
t rest is marked by a dashed line, and the deformed, unactuated camber is denoted by a dotted line. The numerical
alculation for a camber actuated according to (22) is marked by a smooth line. Explicit agreement between the numerical
alculation and the analytic results is evident.
Similarly, a transition between two predefined cambers W1 (X) and W2 (X) can be readily obtained by the following

cheme:

(I) setting Da = 0 and W0 = W1 − Dε/Π in (6a) and solving for D. In this case the RHS integral in (6a) contains only
W1. Hence, the equation is no longer an integrodifferential equation, and D can be calculated by integration. From
D the initial camber at rest W0 is obtained for which the profile W1 is achieved for Da = 0.

(II) After calculating W0, Da can be calculated by setting DΠ/ε = W2 −W0 into (6a) and solving for Da yielding camber
W2.

ig. 5c presents comparisons for the transformation of NACA-2412 camber to NACA-4412 camber. Good agreement
etween the analysis and numerical computations is also presented for this case.
9



N. Chen and A.D. Gat Journal of Fluids and Structures 119 (2023) 103903

4

e
c
c
d
t
u

s
a
e
r
v
d
r
r
s
(
n

c
s
i
m
t
c

D

a

D

A

w

r
e

. Concluding remarks

Recent research deals with chord-wise aeroelasticity in the context of morphing wing sections due to their potential to
nhance the performance of aircraft structures. However, numerical and experimental studies mostly examine a specific
onfiguration, whereas general theoretic analyses of airfoils are rare. In this work, we model a general airfoil as two
antilever beams connected to a torsional spring at an arbitrary location amid its camber. This structure is subjected to
istributed aerodynamic load given by the thin airfoil theory; thus, we obtained an integrodifferential equation governing
he elastic deflection. We expanded the elastic deflection asymptotically and obtained an approximated solution, allowing
s to examine the influence of chord-wise elasticity on the aerodynamic properties.
Moreover, our model includes a general actuation term; thus, it lays a theoretical foundation for an ideal design of

hape-morphing soft airfoils. To validate these results, we compared our solutions with numerical simulations utilizing
commercially available code. Good agreements were achieved in all cases examined, including the application of

mbedded actuation to modify an airfoil camber, thus affecting its aerodynamic properties. Next, we obtained the airfoil
otation angle via the moment balance between the aerodynamic load and torsional spring. The corresponding numerical
alidation shows that our model nicely captures the elasticity influence on the rotation. In addition, we obtained the
ivergence dynamic pressure by examining whether the denominator of the solution for the twist angle vanishes. The
esults contour maps show that introducing chord-wise elasticity enhances divergence onset. Furthermore, unlike the
igid case, there exists a physical solution for divergence for the front quarter-chord. It should be noted that it is the only
tatic instability mode discussed; Other kinds of static instabilities arising due to the introduction of chord-wise elasticity
such as buckling) may also exist, but are not considered instabilities in the model [although others may consider any
onoscillatory static instability as divergence (e.g., Païdoussis et al., 2010)].
A limiting simplifying assumption used in the current study was calculating the aerodynamic load of deformed

onfigurations via thin wing theory, although their chord does not coalesce with the abscissa. This gap might be
urmounted by transforming the deviation into an effective additional angle-of-attack and using a translated configuration
n the calculations. However, as the numerical validations present, the results give an excellent approximation for the
ajority of our analysis domain. In addition, the Euler–Bernoulli equation is applicable only for slender beams; hence,

he results are not valid near XEA = 0 or XEA = 1. Nevertheless, the elastic axis location is far from the edges under most
ircumstances.
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ppendix A. Complementary expressions

Integrating (9a) twice and applying boundary conditions (7b), yields:

4S
Q∞

d2 (D0 − Da)

dX2 = (α̃0 +∆) a (θ)+Π f
⟨
dW0

dX

⟩
(A.1)

here

a (θ) =
θ

2
+ sin (θ)−

sin (2θ)
4

− θ cos (θ)+ π

(
1
2

− 2X
)
H (X − Xea) , (A.2)

and

f
⟨
dW0

dX

⟩
=

∫ π

0

(
dW0

dX

)
φ

{[
cos (θ) cos (φ)−

cos (2φ)
2

]
H (X − Xea)−

a (θ)
π

}
dφ

+
2
π

∞∑
n=1

∫ π

0

dw

dx
cos (nϕ)dϕ lim

k→n

sin (kθ)
[(
k2 + 2

)
cos (2θ)− k2 + 4

]
− 3k sin (2θ) cos (kθ)(

k2 − 4
) (

k2 − 1
) (A.3)

We denoted H for the Heaviside theta function. The solution for spatial slope (11) (as well as elastic deflection) is
eadily obtained by integrating (A.1) and applying (7a). Thus, (11) depends on both the spatial stiffness S (X) and the
lastic axis location XEA.
Solving (16) for the divergence dynamic pressure, the positive root is

Q∞,d = 4π
(
XEA −

1
) √1 +

εK ·MXEA ⟨A(θ)⟩

4π
(
XEA−

1
4

) − 1

, (A.4)

4 εMXEA ⟨A (θ)⟩

10
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Fig. 6. Comparison of lift coefficient vs. angle of attack for rigid NACA-0012 airfoil. The lift coefficient was calculated using XFoil and COMSOL and
ompared with the thin wing theory result - cl,α = 2π . XFoil results show cl,α ≈ 2.2π while COMSOL results show cl,α ≈ 2.12π .

r, solving for the dimensional airspeed,

u∞,d =

√
2s∗π

(
XEA −

1
4

) √1 +
kc·MXEA ⟨A(θ)⟩

s∗π
(
XEA−

1
4

) − 1

ρ∞c3 · MXEA ⟨A (θ)⟩
. (A.5)

q. (16) contains only the leading-order approximation. For any higher-order, one needs to solve a polynomial of degree
hat corresponds to the asymptotic expansion used.

ppendix B. The numerical model used in Section 3.2

For the development of the thin airfoil theory, it is assumed that maximum airfoil thickness is small compared to
hord length, and that camberline shape deviates only slightly from the chord line. Therefore, the vorticity is distributed
n the chordline, whereas the non-penetration condition is satisfied on the camberline. Hence, to minimize the deviation
etween theory and numerical simulation, we focus on a symmetric NACA-0012 airfoil geometry: its camberline coalesces
ith its chordline.
First, we examined a rigid, non-rotating configuration. We calculated the lift coefficient at various angles-of-attack

sing XFoil™ (inviscid formulation, linear-vorticity stream function panel method) and compared it to the theoretical
esults, as Fig. 6 presents. In addition, we calculated lift utilizing COMSOL Multiphysics’

®
Fluid–Structure Interaction

FSI) module, i.e., Navier–Stokes equations and Cauchy equation. The airfoil chord was c = 1 [m], fluid density was
ρ∞ = 1.006

[
kg/m3

]
(taken from standard atmosphere model for an altitude of 2 [km]), and the uniform potential flow

velocity was u∞ = 40 [m/s]. To easily introduce elasticity in later steps, we used the Fluid-Solid-Interaction module with
an airfoil’s Young modulus E = 70 [GPa] (aluminum). The grid consisted of 7×103 first-order unstructured quad elements
with an average (skewness-based) element quality of 0.89 for the fluidic domain and 103 second-order unstructured
triangular elements with average element quality of 0.85 for the solid domain. The size of the rectangular domain was
6c × 10c , rotated by α0 so that the velocity condition at the front boundary is perpendicular to the boundary. The model
included 4 × 104 degrees of freedom. All our solutions converged by at least four orders of magnitude from the value
given at the initial condition.

Fig. 6 compares the lift coefficients calculated numerically with the theoretical values. We found that COMSOL’s result
for lift curve slope is closer to the theoretical result of cl,α = 2π than XFoil’s (error of 5.8% vs. 10%). Henceforth, a 6%
error is considered acceptable.

Thus, we proceeded to the next step and examined a rigid rotatable configuration with an elastic axis at XEA = 0.75. To
facilitate significant rotation angles, we partitioned the fluid domain by a circle with a radius of 1.5c , so that its interior
mesh was allowed to deform and its border allowed to slip relative to the outer meshed domain. Nevertheless, since the
resulting rotation angles’ values were small, the results are presented in Table 2 as the ratio of (dimensional) δ given by
the classic quasisteady aeroelasticity theory to COMSOL’s result for the angle of rotation δ. The mean absolute deviation
for 0 < α0 ≤ 4.5 [◦] and 5 [kN m/rad] ≤ k ≤ 8 [kNm/rad] was 5%, and maximal absolute deviation of 20% (for the
extreme combination of α0 = 4.5 [◦] and k = 5 [kN m/rad], were nonlinear effects increase).

Eventually, we enhanced the airfoil elasticity by using Young’s modulus E = 300 [MPa] so that, by (6d), ε ≈ 0.3. Since
we deal with a non-actuated symmetric configuration, R is independent of the initial angle-of-attack, as can be seen by
δ

11
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G
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Table 2
Ratios of δ values (classic aeroelasticity theory to COMSOL) for a rigid rotatable airfoil. The results were
calculated for a NACA-0012 airfoil with XEA = 0.75, α0 = 4.5 [

◦
] and k = 5 [kN m/rad], were nonlinear

effects increase. This table aims to validate the numerical computation for rigid airfoils prior to comparison
with our model for elastic airfoils.

Table 3
Ratios between δ values, elastic to rigid. (a) values obtained by COMSOL simulations. (b) values
obtained by the model, (B.1). The numerical results present dependence on the initial angle-of-
attack but not the model. For relatively small values of δ (for small k and α0), the deviation is
stronger than for large values of δ. As the torsional stiffness increases, the ratio values converge
to an approximated value of 103%.

substituting ΠW0 = Da = 0:

Rδ,sym =

2π
(
XEA−

1
4

)
+ε

Q∞
4 MXEA ⟨S⟨A⟩⟩

K/Q∞−2π
(
XEA−

1
4

)
−ε

Q∞
4 MXEA ⟨S⟨A⟩⟩

��̃α0

2π
(
XEA−

1
4

)
K/Q∞−2π

(
XEA−

1
4

)��̃α0

(B.1)

The results obtained by COMSOL, however, present dependence on the initial angle-of-attack, α0, as Table 3 shows.
enerally, Rδ is larger than for small values of α0 than for relatively large values of α0, and it is so for k values as well.
t is noted that the absolute values of the rotation angles are small. For instance, the combination of k = 5 [kN m/rad]
and α = 0.5 [◦] gave δ ≈ 0.9 [◦] versus δ ≈ 0.85 [◦]. This fact is an outcome of the asymptotic approximation
0 soft rigid
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t
a
F

f

Fig. 7. Divergence dynamic pressure for uniform stiffness. Panel (a) corresponds to Fig. 2 and presents the divergence dynamic pressure ratio (elastic
o rigid), Q∞,d/Q∞,d,r . For uniform spatial stiffness, the ratio depends on kc/s∗ rather than on XEA , compared to Fig. 2. Panel (b) corresponds to Fig. 3
nd presents normalized divergence dynamic pressure to normalized rotational spring stiffness, ln

(
Q∞,d/K

)
. The values obtained are smaller than

ig. 3.

or relatively small ε. Nonetheless, by examining the ratios Rδ,model/Rδ,COMSOL presented in Table 3, we conclude that our
model, although approximated, well captures the elasticity influence on the rotation angle.

Appendix C. Results for uniform stiffness

The results presented in Sections 3.2 and 3.4 were calculated using the spatial bending stiffness of NACA 4-digits airfoil
thickness distribution based on its local thickness. However, the stiffness of an actual airfoil is determined by its internal
structure, such as reinforcing ribs, stiffened tips, etc. Thus, for comparison, we add here results while using uniform spatial
stiffness (i.e., S ≡ 1) in the calculations of A and F.

Fig. 7 presents the divergence dynamic pressure ratio, discussed in Section 3.2, for uniform airfoil stiffness. Panel (a)
presents the ratio Q∞,d/Q∞,d,r [solution of (15)]. For uniform spatial stiffness, the ratio depends on kc/s∗ rather than on
XEA, compared to the results in Fig. 2. Panel (b) presents the natural logarithm of Q∞,d/K [solution of (16)]. The obtained
values are smaller than those in Fig. 3.

Fig. 8 corresponds to Fig. 4, which presents the influence on aerodynamic properties, discussed in Section 3.3, for
uniform airfoil stiffness. Panel (a) presents the lift curve slope deviation from 2π , c /2π . Like Fig. 4, the slope increases
l,α

13
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P
e

a

Fig. 8. Influence on aerodynamic properties for uniform stiffness. The results are presented as the function of the elastic axis location and the ratio
between aerodynamic moment and bending stiffness, calculated for uniform spatial stiffness. This figure corresponds to Fig. 4, with the same general
view. Panel (a) presents the lift curve slope deviation from 2π , cl,α/2π . The slope increases as XEA moves backward and exceeds 2π at XEA ≈ 0.45.
anel (b) presents the aerodynamic center location deviation from the quarter chord, xEA/ (c/4). The values are smaller than 100%, i.e., chord-wise
lasticity brings the aerodynamic center forward. Unlike the results in Fig. 4b, for XEA → 1 the values do not sharply decrease.

s XEA moves backward, but here it exceeds 2π at XEA ≈ 0.45. Panel (b) presents the aerodynamic center location
deviation from quarter chord, xEA/ (c/4). Here again, the values are smaller than 100%, i.e., chord-wise elasticity brings
the aerodynamic center forward. Nevertheless, unlike the results in Fig. 4, the strong gradients for XEA > 0.85 do not
appear here,

Appendix D. The numerical model used in Section 3.5

In the limit of negligible airfoil twist, we used a NACA-2412 airfoil geometry with a chord of c = 1 [m], clamped at
xEA = 0.25c. Young’s modulus is E = 8 [MPa]. Fluid density is ρ∞ = 1.006

[
kg/m3

]
(taken from the standard atmosphere

model for an altitude of 2 [km]). The angle-of-attack is α = 5 [◦], and the uniform potential flow velocity is u∞ = 40 [m/s].
The arbitrarily chosen actuation method used here is known as embedded-fluidic-networks (EFN). A description of the

relation between the function d , internal pressure, and chambers geometry, is presented in (Matia and Gat, 2015) as a
a

14
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l
ong-wave approximation by which

d2da
dx2

= φ(x)ψ (pc, x) , (D.1)

where φ(x) represents channel density (1/φ(x) is the distance between the channels) and ψ (pc, x) is the total change in
slope dda/dx due to the actuated channel, where pc is the pressure within the channels. In the presented calculations, the
channel cross-section is a circle of diameter of h/5 with the center located 2h/7 above the midplane, where h = h(x) is the
local thickness of the airfoil. For the above parameters and the limit of pc/E ≪ 1, ψ is approximated as ψ ≈ 0.1741 (pc/E)
(see Matia and Gat, 2015 for detailed description).

The numerical calculations utilized COMSOL Multiphysics’
®

Fluid–Structure Interaction (FSI) module, with a grid
consisting of 103 first-order unstructured triangular elements with average element quality of 0.94 for the fluidic domain
and 103 second-order unstructured triangular elements with average element quality of 0.9 for the solid domain. The size
of the rectangular domain was 8c × 10c , rotated by α, so the velocity condition at the front boundary is perpendicular to
the boundary. The model included 104 degrees of freedom. All our solutions converged by at least six orders of magnitude
from the value given at the initial condition. In the first step, the solver created the flow field, allowing deformations to
be created and become stable. Then, the internal pressure was applied within the chambers in the second step.

Fig. 5 presents a comparison between analytic and numerical results. Panel (a) compares the difference between the
numerical calculation wn and the analytic results wa computed by the asymptotic scheme (11) & (12) for uniformly
distributed actuation of d2da/dx2 = 1.94. The channel distribution is presented at the insert, where the channels are
pressurized at pc = 150 [kPa].

Panels (b) and (c) in Fig. 5 present a comparison between numerical and analytic results by inverse calculations,
described in Section 3.5. Panel (b) presents deformation cancellation, which determines the required actuation, and,
thus, the geometry of the chambers (see insert in panel (b); channels are pressurized at pc = 146 [kPa]). Panel (c)
presents comparisons for the transformation of NACA-2412 camber to NACA-4412 camber (channels are pressurized at
pc = 896 [kPa]).
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