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Effect of the Cassie state in grooved channels on one-dimensional sound waves
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Previous experiments and analyses have demonstrated that elastic boundaries reduce the
speed of sound and alter the acoustic waves in fluid-filled tubes. Similar effects will occur
in any configuration with deformable boundaries and fluid-fluid interfaces. In this work,
we study the propagation of nonlinear acoustic waves in 1D liquid-filled tubes with super-
hydrophobic longitudinal grooved boundaries. Recently, grooved channels have attracted
significant interest because of their reduced friction to flow, but such configurations also
allow for a new kind of sound wave behavior due to the dependence of the pressure on
the triple-phase contact line. We derive a model which contains an interplay between the
pressure and the shape of the liquid-gas interface, subject to the hysteresis of the contact
line, which is a dominant mechanism for energy dissipation. Our results present front
propagation, showing an order of magnitude reduction in the speed of sound, as well as
oscillation patterns in which the liquid is pinned in one part of the channel yet oscillating
in the rest of the channel.
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I. INTRODUCTION

Previous analyses and experiments demonstrated that elastic walls bounding an internal fluid
reduce the speed of acoustic waves propagating in the fluid; see, e.g., [1]. Already in 1847, when
Wertheim published experiments measuring the speed of sound of liquids in organ pipes [2], he
noticed that the speed of sound was much lower than the previously measured values and attributed
this reduction to the cylindrical shape of the liquid (as holds true for solids). Later Helmholtz [3]
disproved this theory and noted that the reduction in the speed of sound must depend on pipe wall
thickness, elasticity, and diameter. Finally, in 1878, Korteweg [4] found that the speed of propagation
of axial acoustic waves in elastic tubes could be expressed by

c̃ = 1√
ρ

χ ′ + 2r0ρ

Eh

(1)

where c̃ is the speed of sound, 1/χ ′ is the fluid compressibility, ρ is the fluid density, r0 is the tube
diameter, E is Young’s modulus of the pipe’s wall, and h is the wall thickness.
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FIG. 1. (a) Cross-sectional view of a slender channel, where the area filled with liquid is colored in blue,
and in (b) and (c) two examples of the free surface of the liquid inside the grooves are shown.

In such slender fluid-filled tubes, the elasticity of the boundaries acts to increase the change of
mass per length of the channel cross-section fluid due to increased fluidic pressure. This increases
the “effective compressibility” of the 1D configuration, thus reducing the axial speed of sound. For
the limit of negligible fluid compressibility compared with elastic effects

1

χ ′ � 2r0

Eh
, (2)

Eq. (1) is reduced to the Moens-Korteweg formula for pulse-wave velocity, commonly used as an
indicator of the speed of sound in blood flows [5–9].

In this study we will examine the propagation of sound in channels with Cassie-state walls,
wherein gas bubbles become trapped in the vacancies of the microstructure [10]. In particular, the
geometry of the grooves in our work (see Fig. 1) was used previously in the literature by Xue
et al. [11]. There is currently an increasing interest in such channels, which can be used, e.g., for
reducing hydrodynamic resistance [12–14] and for other applications [15–18]. Moreover, there exist
also numerous theoretical works regarding fluid behavior over such grooved surfaces. For example,
Schnitzer [19] considered the effective hydrophobicity of a periodically grooved surface immersed
in liquid, with trapped shear-free bubbles protruding between the no-slip ridges at a right contact
angle. He derived an asymptotic expansion for the effective slip length and thereby highlighted the
(surprisingly) large slip lengths attainable with densely grooved surfaces. Later Schnitzer and Yariv
[20] studied the effect of superhydrophobicity where the superhydrophobic surface is formed by a
periodically grooved array, in which air bubbles are trapped in a Cassie state, and the solid body
is an infinite cylinder. They considered the case where the grooves are aligned perpendicular to
the cylinder and allowed for three modes of rigid-body motion: rectilinear motion perpendicular to
the surface; rectilinear motion parallel to the surface, in the groove direction; and angular rotation
about the cylinder axis. On another note, Schnitzer et al. [21] investigated the acoustic response of
flat-meniscus bubbles trapped in the grooves of a microstructured hydrophobic substrate immersed
in water. They found that bubbles trapped in grooves support multiple subwavelength resonances,
which are damped—radiatively—even in the absence of dissipation. Another theoretical study was
proposed by Crowdy [22], who presented analytical solutions for longitudinal flow along a superhy-
drophobic annular pipe where one wall, either the inner or outer, is a fully no-slip boundary while the
other is a no-slip wall decorated by a rotationally symmetric pattern of no-shear longitudinal stripes.
In particular, he concluded that for a superhydrophobic annular pipe with inner-wall no-shear
patterning there is an optimal pipe bore for enhancing hydrodynamic slip for a given pattern of
no-shear stripes. Sbragaglia and Prosperetti [23] studied surface deformation on a superhydrophobic
surface, where the pressure difference between the liquid and the gas in the grooves causes a
curvature of the liquid surface resisted by surface tension. Switching of the two superhydrophobic
states, from a Cassie-Baxter state to a Wenzel state, was proposed by Lei et al. [24]. This was
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achieved by applying pressure to the water in the fluidic chamber, thus leading to the reversible or
irreversible change of the diffraction pattern. The irreversible change under high applied pressure
was attributed to the switch from Cassie-Baxter state to a Wenzel state. Most recently, Cassie state
was studied theoretically, based on 3D Navier-Stokes equations, by Game and coworkers [25],
who developed a hybrid asymptotic/numerical method to compute the velocity field through a
microchannel textured with periodic longitudinal grooves that support a slowly varying meniscus
protrusion and driven by a given pressure drop across the microchannel. In a recent experimental
study, Dehe et al. [26] demonstrated that by suspending the electrolyte in a Cassie-Baxter state
(i.e., employing microstructured superhydrophobic surfaces) the electro-osmotic flow velocity can
be increased by an order of magnitude, relatively to no-slip surfaces, thus enabling wider utility of
electro-osmotic flow in manipulation of microscale flows.

The configurations studied in the above paragraph naturally involve capillary forces. Such forces
interact with interface waves and oscillations, as seen in the review of Perlin and Schultz [27], who
discussed the effects of the surface tension on free and forced surface waves for linear, nonlinear,
and especially strongly nonlinear waves. To investigate the contact line effects, Miles [28] used a
complex-valued boundary condition along the lateral boundaries to allow a phase shift between the
free surface and the container boundary. His formulation and solution are analogous to a spring-
mass-damper system where the contact line always resists motion, due to capillary hysteresis. Later
Henderson and Miles [29] conducted experiments with brimful deep-water conditions in a circular
cylinder with clean and with fully contaminated (inextensible) water. They found good agreement
between Miles’ theory and their increased experimental frequency. The damping rates, however, did
not agree, which was attributed to the contact line dynamics (since the contact line was pinned, the
contact-line damping was excluded partially in their experiments). Estimates of dissipation at the
moving contact line were provided by Milner [30], by assessing the work done by surface tension
as the contact-line position and angle change. Using the results of Milner [30], Christiansen et al.
[31] demonstrated that inclusion of the moving contact line dissipation was required (in addition
to the bulk dissipation) to obtain reasonable damping estimates. Confirming these results, by using
a large aspect ratio (tank length to width) of 10:1 and deep water, Faraday-wave experiments, and
numerical estimates, Jiang [32] found that damping rates were much larger than those predicted by
theory without contact-line contributions. Another relevant study was proposed by Gat et al. [33],
who studied both, theoretically and experimentally, the dynamics of freely moving plates connected
by a shallow liquid bridge. They obtained an impulse-like peak in the force applied by the liquid
bridge on the plates and linear and nonlinear oscillations of the system for the case of surfaces
with low wettability, as a result of small perturbations of the system around the equilibrium point.
Most recently, Shelton and Trinh [34] developed an asymptotic theory for steadily traveling gravity-
capillary waves under the small-surface tension limit, where it was demonstrated that solutions
associated with a perturbation about a leading-order gravity wave (a Stokes wave) contain surface-
tension-driven parasitic ripples with an exponentially small amplitude.

Capillary oscillations have many applications. For example, Tan et al. [35] studied the inter-
play between a capillary wave motion and high-frequency surface acoustic waves (SAWs) of a
liquid film lying on top of a piezoelectric substrate. Thereafter, Douvidzon et al. [36] proposed
an experiment for light guided through the water fiber which allows optical interrogation of its
capillary oscillations. They further note that coconfining two oscillations in nature, capillary and
electromagnetic, might allow a new type of device called microelectrocapillary systems (MECSs).
Most recently, Ly and coworkers [37] presented experimental and modeling results of melt pool
dynamics, droplet ejections, and hole drilling produced by periodic modulation of laser intensity.
The physics of capillary surface wave excitation was discussed and simulation was provided to
elucidate the experimental results, which demonstrated that resonant excitation of surface capillary
waves can enhance material removal rate by more than 10×.

The dynamics of periodic arrays of micrometer-sized liquid-gas menisci formed at superhy-
drophobic surfaces immersed into water was investigated by Rathgen et al. [38], who measured the
intensity of optical diffraction peaks in real time. They observed a pronounced resonance at a few
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hundred kilohertz. By modeling the system using the unsteady Stokes equation, they concluded that
this low resonance frequency was caused by a collective mode of the acoustically coupled oscillating
menisci. Later, diffraction patterns of a superhydrophobic surface, consisting of rectangular grooves
and which was immersed in water, were used by Rathgen and Mugele [39], enabling them to
determine the shape of the menisci and microscopic contact angle.

Since elasticity of the boundaries at the fluid-solid interface affects the speed of sound in slender
elastic channels, a similar effect is expected due to surface tension at the liquid-gas interface for
open channels. The aim of this work is to relate between capillary oscillations and one-dimensional
flows on superhydrophobic grooved surfaces. In particular, we examine the dynamics of waves
in superhydrophobic grooved tubes under the effect of capillary waves including the contact line
hysteresis, which according to our knowledge was not addressed previously. In Sec. II we present the
derivation of the acoustic equation for fluids contained in slender deformable channels. Section III
is devoted to the relation between area and pressure in the pinned and unpinned contact line cases,
where in addition we show an area-pressure curve during one hysteresis cycle. In Sec. IV we present
and discuss our results, and give some concluding remarks in Sec. V.

II. DERIVATION OF THE AXIAL ACOUSTIC EQUATION FOR FLUIDS CONTAINED
IN SLENDER CHANNELS WITH DEFORMABLE BOUNDARIES

We examine weak pressure waves propagating in a slender open channel, whose cross section is
shown in Fig. 1. The axial direction is x and the cross section lies in the y-z plane. Note that
“slender” here means that the the radius of the cross-sectional area is small compared to its length.
The compressibility in the model is the compressibility of the liquid, which might be small but not
zero.

Similarly to [40] (Chapter 5) integrating the continuity equation over the control volume and
applying divergence theorem yields the quasi-1D unsteady mass-conservation and momentum
equations [41,42],

∂

∂t
(ρa) + ∂

∂x
(aρu) = 0 (3)

and

∂ (ρua)

∂t
+ ∂ (ρu2a)

∂x
= −a

∂ p

∂x
, (4)

where ρ(x, t ), u(x, t ), and p(x, t ) denote the cross-sectionally averaged 1D fluid density, velocity in
the x direction, and pressure, respectively, and a = a(x, t ) denotes the variable tube’s cross section.

Further, following standard relations for isentropic flow [40], we use the following form of the
isentropic relation:

∂ p

∂x
= c2(x, t )

∂ρ

∂x
, (5)

where c(x, t ) denotes thermodynamic speed of sound.
We define a small parameter, 0 < ε1 � 1, to be

ε1 := pC

c2
0ρC

, (6)

where ρC := ρ(p = pgas) is the density at rest, and pgas is the pressure of gas in the gas-filled area
in the groove (for a discussion regarding the pressure of gas in the gas-filled area, see Appendix B),
and pC is the characteristic pressure amplitude. Note that ε1 is a characteristic value of the Mach
number.

To render the equations dimensionless we use the following transformations, where the capital
letters and ρN denote dimensionless quantities. More specifically, we denote the axial coordinate by
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X , the speed in x axis by U , the time by T , the cross-sectional area by A, the sound speed by C, and
the density by ρN , so that

X = x

l
, U = u

ε1c0
, T = tc0

l
, A = a(p)

aC
, C = c

c0
, ρN = ρ

ρC
, (7)

where l is the channel length, c0 is the fluid speed of sound in an unbounded domain,
aC := a(p = pgas) = πr2

t is the fluid-filled cross-sectional area at the unperturbed pressure pgas,
and rt is the radius of the tube.

Furthermore, we define the normalized fluidic pressure

P = p

pgas
= 1 + pC

pgas
P1, (8)

where P is the scaled pressure and P1 is the scaled pressure difference from the unperturbed state.
Substituting Eqs. (7) and (8) into (3)–(5), we obtain that the dimensionless system of our

equations is given by

∂

∂T
(ρN A) + ε1

∂

∂X
(AρNU ) = 0, (9a)

∂ (ρNUA)

∂T
+ ε1

∂ (ρNU 2A)

∂X
+ A

∂P1

∂X
= 0, (9b)

ε1
∂P1

∂X
= C2(X, T )

∂ρN

∂X
. (9c)

Let us consider the case of small disturbances in the density,

ρN (X, T ) ≈ 1 + ε1ρN,1(X, T ), (10)

and assume that P1(X, T ) is of order O(1) with respect to ε1. Using (9c), these assumptions imply
small disturbances in the speed of sound relative to the speed of sound in the unbounded domain,
namely, that

C(X, T ) ≈ 1 + ε1C1(X, T ). (11)

Similarly, we assume that

A(X, T ) ≈ 1 + Kε1A1[P1(X, T )], (12)

where K > 0 is a constant to be discussed in the continuation of this section. The constant K is a
degree of freedom which allows us to focus on different timescales, such that in the two limits of K ,
different mechanisms become more dominant.

Substituting the expansions in Eqs. (10)–(12) into (9), we get at leading order the following
system of equations:

KA′
1
∂P1

∂T
+ ∂ρN,1

∂T
+ ∂U

∂X
= 0, (13a)

∂P1

∂X
+ ∂U

∂T
= 0, (13b)

∂P1

∂X
= ∂ρN,1

∂X
, (13c)

where for brevity we use the following notation: A′
1 := ∂A1/∂P1. For further details regarding the

derivation of Eq. (13), see Appendix A.
Integrating the isentropic equation, Eq. (13c), with respect to X , we readily get that

P1(X, T ) = ρN,1(X, T ), (14)

up to a constant of integration.
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Differentiating the equation in Eq. (13b) with respect to X yields that

∂2U

∂X∂T
= − ∂2P

∂X 2
.

Substituting this result and Eqs. (14) into (13a) which was differentiated with respect to T , we get
that

KA′′
1

(
∂P1

∂T

)2

+ (1 + KA′
1)

∂2P1

∂T 2
− ∂2P1

∂X 2
= 0. (15)

The focus of the current study is on the interaction between acoustic waves and the hysteresis
of the contact angle. Thus, we shall scale the time so that both effects become of the same order
of magnitude. Note that for the limit 0 < K � 1, Eq. (15) degenerates to a standard 1D linear
wave equation, which is dominated by fluid compressibility and does not constitute an interesting
limit. However, the interesting limit which allows to catch the interplay between acoustic waves
and contact angle hysteresis occurs when K � 1. If the disturbance in area, A1[P1(X, T )], is due to
the contact angle hysteresis, then based on geometrical considerations which will be explained in
Sec. III, it is reasonable to set K to be K := (hCρCc2

0 )/(rt pC ), where hC denotes the characteristic
thickness of the fluid inside a groove (between the opening of the groove and the contact line) and rt

is the interior radius of the tube cross section. Note that in the context of the current problem, based
on realistic values, we indeed obtained that K � 1 as desired. To summarize this discussion, note
that requesting that the area-dependent terms in Eq. (15) will be of the same order of magnitude as
area free terms implies the need to rescale the time appropriately. More specifically, let us rescale
the timescale as

T̃ = T√
K

, (16)

which substituted into Eq. (15) yields that

A′′
1

(
∂P1

∂T̃

)2

+
(

A′
1 + 1

K

)
∂2P1

∂T̃ 2
− ∂2P1

∂X 2
= 0. (17)

For brevity, from now on, we shall omit the tilde from T . Note that since K � 1, the (dimensionless)
solution of Eq. (17) is not sensitive to the specific value of K . However, since K affects the timescale
according to Eq. (16), the dimensional solution is dependent on K .

An additional assumption which is needed in order to ensure that the contact line motion occurs
on the same timescale as the acoustic axial flow, is, as will be stated in Sec. III, that a capillary
number is small, Ca � 1. This in particular implies that the contact line position and the interface
equilibrium shape are determined very fast and thus are in equilibrium with the internal pressure.
Other limits of the interface dynamics, may also exist, and they should create different wave
equations, which are beyond the scope of the current study.

Equation (17) constitutes a nonlinear second-order PDE, where A1(P1) is an unknown function.
In Sec. III we present geometrical considerations of the Cassie state which enable us to get an
algebraic expression for A1(P1) in two different cases: a pinned and an unpinned contact line.
Afterwards, we explain our approach for the contact angle hysteresis, which is an alternating
sequence of pinned and unpinned contact line modes. Then we solve numerically the resulting
problem, which is composed of the PDE in Eq. (17) and the equation for the area subject to the
contact angle hysteresis for two sets of inset/outset boundary conditions.

III. THE RELATION BETWEEN AREA AND PRESSURE

The effect of surface tension appears only via the function A1(P1). In many cases this is not
too interesting, due to similarities with known elastic cases. However, surface tension can create
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w
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h

θsπ - θf

θo

FIG. 2. (a) Cross-sectional view of the channel. (b) An increased view of one groove, where the geometric
parameters are indicated.

unexpected results. In this section we present the derivation of the equations only in the hydrophobic
case, where the hydrophilic case appears in Appendix C.

A. Hydrophobic case: Geometric considerations and the Young-Laplace relations

Let us assume that the liquid-gas interface is in a quasi steady equilibrium, which is valid when
the capillary number is sufficiently small, namely, Ca = με1ε2c0/γ f � 1, where γ f is the surface
tension of the free surface, μ is the viscosity of the liquid, and a dimensionless parameter ε2 will be
defined in the continuation of this section. This assumption is equivalent to attaining a minimum of
surface tension potential energy, and thus the interface cross section can be assumed to be a circular
arc (see [43]). Hence, from geometrical considerations the cross-sectional area is given by

a(x, t ) = πr2
t + N

(
r2

c (x, t )

2
{θo(x, t ) − sin [θo(x, t )]} + h(x, t )[wb + w(x, t )]

2

)
, (18)

where the number of grooves is given by

N = 2πrt

(1 + ng)wb
, (19)

and where h, wb, w, θo, rc, and ng are the distance between the opening of the groove and the contact
line, the width of the grooves, the distance between the two contact lines in the grooves, the central
angle of the free surface of the liquid, the radius of curvature of the free surface of the liquid, and the
ratio distance of grooves (so that wbng is the distance between two adjacent grooves), respectively;
see Fig. 2.

This equation is coupled with three additional geometrical relations, which are given in Ap-
pendix C, and the following equation which follows from the Young-Laplace equation. More
specifically, when neglecting streamwise curvature, we get that the Laplace pressure can be ex-
pressed as

γ f

rc(x, t )
= p(x, t ) − pgas. (20)

Let us define a small parameter, 0 < ε2 � 1, to be

ε2 := hC

rt
. (21)

064803-7



ZIGELMAN, MANSFIELD, AND GAT

Note that the assumption that 0 < ε2 � 1 means that the area change in each cross section of the
tube is very small relatively to the unperturbed area.

We scale the equations in the identical way to the previous section and furthermore define
additional dimensionless functions and parameters, as follows:

H (X, T ) = h(x, t )

hC
, W (X, T ) = w(x, t )

hC
,

RC (X, T ) = rc(x, t )

hC
, RT = ε2rt

hC
≡ 1, Wb = wb

hC
. (22)

Expanding the rescaled area, A = a/πr2
t , in asymptotic series in ε2, namely,

A = 1 + ε2A1[P1(X, T )], (23)

and requesting that the expansion in Eq. (23) coincides with the expansion of A in Eq. (12), we set
K to be

K := ε2

ε1
= hCρCc2

0

rt pC
. (24)

Using standard algebraic manipulations and trigonometric identities, we get that the system of
equations in Eqs. (18) and (20) can be expressed as

A1(P1) = 2

(1 + ng)Wb

[
WbH (X, T ) − H2(X, T ) tan (θs)

+ 1

2	−2
c P2

1 (X, T )
(2[θ f (X, T ) − θs] − π + sin {2[θ f (X, T ) − θs]})

]
, (25a)

Wb + 2 cos [θ f (X, T ) − θs]

	−1
c P1(X, T )

= 2H (X, T ) tan (θs), (25b)

where θs is the inclination angle of the grooves’ walls, θ f is the wetting angle (see Fig. 2), and 	c

denotes the following dimensionless number, which reflects the capillary pressure and is defined as

	−1
c := pChC

γ f
. (26)

For further details see Appendix C.
Hence, for a given pressure, P1, we have obtained two equations which are given in Eq. (25) that

relate three unknowns: A1, H , and θ f . Thus, in order to solve this system, we need to prescribe an
additional unknown among the listed three ones, which is achieved by addressing the pinned and
the unpinned contact line cases separately in Secs. III B and III C, respectively. After the discussion
regarding the pinned and the unpinned contact line cases, we will discuss in Sec. III D the hysteresis
cycle, which is an altering combination of pinned and unpinned contact line modes. In particular,
the discussion in Sec. III D should serve as a basis for our numerical algorithm, and thus for the
results that are presented in Sec. IV.

B. The pinned case

In the pinned case, H is constant and only the wetting angle changes. Note that Eq. (25b) implies
implicitly the following constraint on 	−1

c P1(X, T ):

∣∣	−1
c P1(X, T )| �

∣∣∣∣Wb

2
− H tan (θs)

∣∣∣∣
−1

. (27)
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FIG. 3. The plots of the first (shown by solid lines) and the second (shown by the dashed lines of the
corresponding color) order derivatives, dA1/dP̃1 and d2A1/dP̃2

1 , vs P̃1 := 	−1
c P1 in the pinned contact line

case, where ng ≈ 6.958 and hC = 1 mm. Further, the parameters in the subplots are as follows: in (a) the
different colors stand for different values of H , H = 0.125, 0.25, 0.5, 1, and the rest of the parameters are
θs = 10◦ and Wb = 1; in (b) the different colors stand for different values of θs, θs = −10◦, 0◦, 5◦, 10◦, and
the rest of the parameters are H = Wb = 1; in (c) the different colors stand for different values of Wb, Wb =
0.5, 0.75, 1, 1.25, and the rest of the parameters are H = 1 and θs = 10◦.

If the constraint in Eq. (27) is satisfied, then Eq. (25b) allows us to isolate θ f , as follows:

θ f = θs ± arccos
[

1
2 [2H tan (θs) − Wb]	−1

c P1(X, T )
]
. (28)

From geometrical considerations and properties of arcos function, it follows that in the hydrophobic
case, where θs > 0, P1 must be nonnegative, and the correct sign in Eq. (28) is plus, so that

θ f = θs + arccos
{

1
2 [2H tan (θs) − Wb]	−1

c P1(X, T )
}
. (29)

For further details, see Appendix C.
Substituting Eqs. (29) into (25a), we obtain that

A1(P1) = 2WbH − 2H2 tan (θs)

(1 + ng)Wb
+ 1

(1 + ng)Wb	−2
c P2

1

×
[

2 arccos

{[
H tan (θs) − Wb

2

]
	−1

c P1

}
− π

+ sin

(
2 arccos

{[
H tan (θs) − Wb

2

]
	−1

c P1

})]
. (30)

In Fig. 3 we show the dependence of the first (shown by solid lines) and second (shown by
dashed lines of the corresponding color) order derivatives, dA1/dP̃1 and d2A1/dP̃2

1 , on P̃1 := 	−1
c P1,

for P̃1 ∈ [−1, 1] in the pinned contact line case. In Fig. 3(a) we vary H , in Fig. 3(b) we vary the

064803-9



ZIGELMAN, MANSFIELD, AND GAT

inclination angle, θs, and in Fig. 3(c) we vary the width of each groove, Wb. In all subplots the rest
of the parameters are kept fixed.

Note that in the hydrophobic case (θs > 0), only a positive range of P̃1 is physical, whereas in the
hydrophilic case (θs < 0), only a negative range of P̃1 is physical (see Appendix C 2). For θs = 0,
both the positive and the negative ranges of P̃1, are physical. It can be seen that in the hydrophobic
case the first-order derivative, dA1/dP̃1, is a monotone increasing function of P̃1 and of Wb and it
is a monotone decreasing function of H and of θs. In the hydrophilic case, dA1/dP̃1 is a monotone
decreasing function of P̃1. Moreover, in the case that θs = 0 it is a symmetric function with respect
to P̃1, which attains a minimum for P̃1 = 0, it is monotone decreasing for negative values of P̃1 and
monotone increasing for the positive ones. Moreover, in this case the first-order derivative, dA1/dP̃1,
is greater in absolute value than the second-order derivative, dA2

1/dP̃2
1 , by at least a factor of two,

reaching in many cases a difference of one order of magnitude or more.

C. The unpinned limit

This limit is even more interesting due to the hysteresis effects. In this limit the wetting angle θ f

is constant (and equal to the receding or advancing value) while H varies, so that Eq. (25a) can be
expressed as

A1(P1) = 1

(1 + ng)Wb

(
2WbH − 2H2 tan (θs) + {2(θ f ,A/R − θs) − π + sin [2(θ f ,A/R − θs)]}

	−2
c P2

1

)
,

(31)

where θ f ,A/R denotes either the advancing contact angle value or the receding one. Further, Eq. (25b)
can be expressed as

H (X, T ) = 1

2 tan (θs)

[
Wb + 2 cos (θ f ,A/R − θs)

	−1
c P1(X, T )

]
. (32)

Implicit is here the assumption that since the inclination angle is positive, namely, θs > 0, the r.h.s.
of Eq. (32) should yield

−Wb <
2 cos (θ f ,A/R − θs)

	−1
c P1(X, T )

< 0, (33)

which follows from the fact that

W = −2 cos (θ f ,A/R − θs)

	−1
c P1(X, T )

,

and according to our assumptions W should satisfy W ∈ (0,Wb). The constraint in Eq. (33) implies
that if 0 < (θ f ,A/R − θs) < π/2, then P1(X, T ) must be negative and satisfy

	−1
c P1(X, T ) < −2 cos (θ f ,A/R − θs)

Wb
. (34a)

Otherwise, if π/2 � (θ f ,A/R − θs) < π , then P1(X, T ) must be positive and satisfy

	−1
c P1(X, T ) > −2 cos (θ f ,A/R − θs)

Wb
. (34b)
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FIG. 4. The first (shown by solid lines) and the second (shown by the dashed lines of the corresponding
color) order derivatives, dA1/dP̃1 and d2A1/dP̃2

1 , vs P̃1 in the unpinned contact line case, where ng ≈ 6.958 and
hC = 1 mm. Further, the parameters in the subplots are as follows: in (a) the different colors stand for different
values of the contact angle, θ f , θ f = 45◦, 90◦, 135◦, and the rest of the parameters are θs = 10◦ and Wb = 1; in
(b) the different colors stand for different values of θs, θs = −10◦, 5◦, 10◦, and the rest of the parameters are
θ f = 135◦ and Wb = 1; in (c) the different colors stand for different values of Wb, Wb = 0.75, 1, 1.25, and the
rest of the parameters are θs = 10◦ and θ f = 135◦. The gray rectangles represent regions where the solution is
unstable (since dA1/dP̃1 < 0).

In the case that the constraints in Eq. (34) are satisfied, substituting Eqs. (32) into (31), we
conclude that

A1(P1) = 1

2(1 + ng)Wb tan (θs)
×

(
W 2

b − 4 cos2 (θ f ,A/R − θs)

	−2
c P2

1

)

+ {2(θ f ,A/R − θs) − π + sin [2(θ f ,A/R − θs)]}
(1 + ng)Wb	−2

c P2
1

. (35)

In Fig. 4 we show the dependence of the first (shown by solid lines) and second (shown by dashed
lines of the corresponding color) order derivatives, dA1/dP̃1 and d2A1/dP̃2

1 , on P̃1 = 	−1
c P1, for P̃1

in subintervals in [−2, 2] for which the constraints in Eq. (34) [or in Eq. (C18) in the hydrophilic
case; see Appendix C 2] are satisfied, in the unpinned contact line case, where the liquid is assumed
to be water. In Fig. 4(a) we vary the wetting contact angle of the liquid, θ f , in Fig. 4(b) we vary the
inclination angle, θs, and in Fig. 4(c) we vary the width of each groove, Wb. In all subplots the rest
of the parameters are kept fixed.

Looking at Fig. 4 it can be seen that the first-order derivative dA1/dP̃1 attains maximum at the
lowest bound of P̃1, when considering only the range where the constraint holds, and it is a monotone
decreasing function of P̃1. When the constraint is not satisfied, this means that the liquid either enters
from the groove into the main channel or exits from the main channel into the groove. Moreover, as
expected, for θs = 10◦ only hydrophobic liquids are stable, and vice versa; for the wetting contact
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angle of θ f = 135◦ only positive inclinations, θs > 0, lead to stable solutions. Furthermore, for
θs = 10◦ and θ f = 135◦ the function dA1/dP̃1 is a decreasing function of Wb. Another observation,
which differs from the pinned contact line case, is that now the second-order derivative, dA2

1/dP̃2
1 ,

is greater in absolute vale than the first-order derivative, dA1/dP̃1, although both of them are of the
same order of magnitude.

D. Hysteresis

Next, let us discuss the hysteresis of the contact line motion and suppose that the pressure,
P1, is a periodic function of time, where in each period, initially it is a monotone increasing
function of time and afterwards a decreasing one. The resulting hysteresis cycle can be described as
follows:

(i) Initially, the pressure, P1, increases, the liquid contact line is pinned, and the contact angle
increases, starting its equilibrium value (which is between the receding and advancing contact angle
values), until it reaches the advancing contact angle value.

(ii) When the advancing contact angle is reached, the contact line unpins and starts to
move (with a constant contact angle due to a small capillary number; see [43]) towards the
grooves’ end (to increase the area of the liquid). This continues until the pressure, P1, starts to
decrease.

(iii) When P1 starts to decrease, the contact line gets stick again and the contact angle starts to
decrease, in order to reduce the area, until it reaches the receding contact angle value.

(iv) When the receding contact angle is reached, the contact line unpins and starts to slip [with a
constant contact angle, similarly to case (ii)] towards the interior of the groove (to decrease the area
of the liquid) until the pressure starts to increase again.

The next stage after stage (iv) is stage (i). This cycle repeats, as far as the pressure is a periodic
function of time.

We visualize the cycle which was described above by cartoons in Fig. 5, where the solid curves
in the graph which were calculated according to Eqs. (30) and (35), show the dependence of the
area A1 on the pressure P̃1 = 	−1

c P1 in each stage of the dynamics. The liquid was assumed to
be water, and the receding and advancing contact angles were assumed to be θ f ,R = 110◦ and
θ f ,A = 115◦, respectively, and the pinning was assumed to occur for H = 0.25 and H = 1. The
points of intersection of the solid curves indicate what are the critical pressure values for which
the interchange from one type of the contact line motion to the the second type occurs. As can be
observed, in the pinned contact line cases the area is approximately a linear function of the pressure,
P̃1, (and thus of P1) whereas in the unpinned contact line cases the area is a nonlinear function of P̃1

(and thus of P1) where the nonlinearity is the most evident in the case of the advancing contact angle.
Furthermore, it is easy to conclude that the area changes faster in the unpinned regimes of motion
than in the pinned ones, and the sharpest change occurs when the interface moves to decrease the
wet area with the contact angle which is equal to the receding one.

An additional observation is that, as expected, when looking at the two curves which correspond
to the unpinned contact line regimes, the area-pressure curve which corresponds to the advancing
contact angle is to the right of the curve, which corresponds to the receding contact angle, because in
order to obtain the same area in both cases, more pressure is needed in the cases of a larger wetting
contact angle. Moreover, according to the graph, the difference between the pressure needed in order
to obtain the same area in the unpinned contact line case with advancing and receding contact angles
monotonically increases with increasing the pinning position of the contact line.

IV. RESULTS

In Fig. 6 we show the results of our simulation in Case 1, with sinusoidal signal in the inlet
pressure and zero pressure at the outlet, where A = 0.4 and ω = 0.5 (for details regarding the
supplementary conditions and the implementation, see Appendix D). More specifically, in Fig. 6(a)
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FIG. 5. The solid curves represent area variations as a function of P̃1 in a hysteresis cycle, where the red
and black curves represent an unpinned contact line motion with constant contact angles, θ f ,A = 115◦ and
θ f ,R = 110◦, respectively, and blue and maroon curves represent a pinned contact line motion with constant
pinning positions, H = 0.25 and H = 1, respectively. The cartoons and the arrows schematically represent
the dynamics of the free surface in one hysteresis cycle which constitutes an increase of the pressure from
P̃1 ≈ 0.38 to P̃1 ≈ 0.8, where for P̃1 ≈ 0.57 the evolution changes from pinned contact line motion to the
unpinned one, and afterwards the pressure decreases from P̃1 ≈ 0.8 to P̃1 ≈ 0.38, where for P̃1 ≈ 0.54 the
evolution changes from pinned contact line motion to the unpinned one. The rest of parameters are Wb = 1,
ng ≈ 6.958, and θs = 10◦.

we show the temporal variations of the pressure, P1, for various positions X ∈ (0, 1) inside the tube.
The pressure waves are seen to be harmonic. As can be seen, the sinusoidal (in T ) oscillations are
with an amplitude which depends on X but is independent of T and as we move towards X = 1 the
oscillations decay. In Figs. 6(b) and 6(d) we show the temporal variations of the contact angle, θ f ,
and the corresponding film thickness, H , for various positions X ∈ (0, 1) inside the tube. Note that
we obtained square waves for the position of the contact line. Moreover, it can be observed that only
in a part of the tube a full hysteresis cycle occurs, whereas in the rest of the tube the contact line
is pinned. The transition between the hysteresis and the pinned contact line regime occurs for some
X in the range X ∈ (0.2, 0.4), where the height of the contact line, H , in the pinned contact line
region decreases as we move from X = 0 to X = 1. Furthermore, the hysteresis cycles decrease,
in the sense that the distance between the two pinned positions decreases, as we move from X = 0
towards the tube interior, until the hysteresis disappears at all and interchanges to a pinned regime.
This fact is also visualized in Fig. 6(c), where we show the dependence of pressure, P1, on the
area, A1. In this panel, it can be seen that after an initial transient, either the system enters into a
hysteresis mode, where the cycles get smaller and smaller as we move toward the interior of the
tube, or it oscillates on the same path where the pressure variations and the area decrease as we
move toward X = 1. See the corresponding movie in the Supplemental Material [44], representing
the temporal evolution of the pressure, P1, film thickness, H , and contact angle, θ f as a function of
X , for T ∈ (0, 60].

In Fig. 7 we show the results of our simulation in Case 2, with a sudden increase in the inlet
pressure and no flux boundary conditions in the outlet, where B = 0.5 (for details regarding the
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FIG. 6. Periodic evolution of the pressure inside the tube in Case 1, where Wb = 1, ng ≈ 6.958,

θs = 10◦, θ f ,R = 110◦, θ f ,A = 120◦, and the amplitude and the frequency satisfy A = 0.4 and ω = 0.5, re-
spectively, where in (a) we show temporal, T , variations of the pressure, P1, in (b) temporal variations of the
contact angle, θ f , in (c) the dependence of the pressure, P1, on the area of the corresponding cross section,
A1, and in (d) temporal variations of the height of the film, H . The colors of the curves indicate different
positions, X ∈ (0, 1), of the corresponding cross sections inside the tube. See the corresponding movie in the
Supplemental Material [44].

supplementary conditions and the implementation, see Appendix D). More specifically, in Fig. 7(a)
we show the temporal variations of the pressure, P1, for various positions X ∈ (0, 1) inside the
tube. In this case, after an initial transient, we get slowly decaying oscillations in the pressure.
Furthermore, the amplitude of the oscillations increases as we move towards X = 1. This oscillatory
behavior is a consequence of incorporating the area variations into the equation; without taking
this into account in the model the pressure would tend to a steady state which would be achieved
after an initial transient. The oscillatory behavior of the current case is also visualized in Fig. 7(b),
where we show the dependence of the pressure, P1, on the area, A1. As can be observed, after an
initial transient (during which the point near the outlet manages to perform a hysteresis cycle), the
system enters into some path, whose length increases as we move toward X = 1. After entering the
corresponding path, the system starts to oscillate along it as time moves on. In Figs. 7(b) and 7(c)
we show the temporal variations of the contact angle, θ f , and the corresponding film thickness, H .
In particular, these panels indicate that inside the tube only the pinned contact regime holds, where
as we move toward X = 1, the film thickness increases and the amplitude of the oscillations in θ f

increases as well. See the corresponding movie in the Supplemental Material [44], representing the
temporal evolution of the pressure, P1, film thickness, H , and contact angle, θ f as a function of X ,
for T ∈ (0, 7].
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FIG. 7. Periodic evolution of the pressure inside the tube in Case 2, where Wb = 0.8, ng ≈ 5.4,

θs = 10◦, θ f ,R = 110◦, θ f ,A = 120◦, and the prefactor of the Heaviside function is given by B = 0.5, where in
(a) we show temporal, T , variations of the pressure, P1, in (b) the dependence of the pressure, P1, on the area
of the corresponding cross section, A1, in (c) temporal variations of the contact angle, θ f , and in (d) temporal
variations of the height of the film, H . The colors of the curves indicate different positions, X ∈ (0, 1), of the
corresponding cross sections inside the tube. See the corresponding movie in the Supplemental Material [44].

In Figs. 8(a) and 8(b) we show spatial variations of the pressure P1 and the contact angle, θ f , at
early times, T ∈ (0, 0.5), and in Figs. 8(c) and 8(d) we show spatial variations of the pressure P1

and the contact angle, θ f , during one representative cycle, for T ∈ [1.84, 3], which takes place after
the initial transient. Looking at Figs. 8(a) and 8(b) it can be seen that the pressure front propagates
inside the tube, from the inlet till the outlet, which is reflected by the increase in the contact angle.
Note that in this example after about T = 0.35 the front reaches the outlet. If we transform T
to dimensional time (see discussion in Sec. II), where we assume that the liquid is water, so that
c0 = 1000 m/s and ρC = 1000 kg/m3, and the characteristic length and tube’s radius are l = 1 m
and rt = 10−4 m, respectively, and use the scaling for pressure pC ≈ 1271 Pa we get that it takes
about

t = 0.35 × l

√
K

c0
≈ 0.031 sec

for the signal to reach the outlet. This means that the speed of pressure front propagation under the
current conditions (with the hysteresis effect) is equal approximately to 1/0.031 ≈ 32 m/sec, which
is about 30 times slower than the speed of sound. For an additional example of gradual propagation
of the pressure signal, which is reflected by the corresponding propagation of the increase in the film
thickness (unpinned case) with sinusoidal signal in the inlet as in Case 1, but with a much larger
frequency of ω = 10, see the corresponding movie in the Supplemental Material [44].
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FIG. 8. (a), (b) Spatial, X , variations of the pressure, P1, and the contact angle, θ f , respectively, at early
times T ∈ [0.02, 0.49] (just after inserting pressure in the inlet). (c), (d) Spatial, X , variations of the pressure,
P1, and the contact angle, θ f , respectively, at a representative cycle (where the film thickness, H , has already
reached a steady state), for T ∈ [1.84, 3]. The different colors in (a) and (b) as well as in (c) and (d) correspond.
In (b) and (d) the film thickness H is marked by a dotted-dashed red line, and the dashed blue lines in (c) and
(d) emphasize that at the end of the cycle P1 and θ f almost coincide with the corresponding functions at the
beginning of the cycle.

After the signal reaches the outlet, the pressure starts to oscillate, where during the first period
the contact angle increases up to the advancing value, θ f ,A, which is followed by the unpinned
mode of motion during which the liquid-air interface reaches a steady-state thickness, H [shown in
Fig. 8(d) by a dotted-dashed line]. In all of the next cycles, the pressure, P1, and the contact angle,
θ f , oscillate together, as can be seen in Figs. 8(c) and 8(d). Note that the curves of P1(X, T = 1.84)
and P1(X, T = 3), obtained approximately at the beginning and at the end of a cycle, respectively,
are very close, and so are the corresponding curves of the contact angles, θ f (X, T = 1.84) and
θ f (X, T = 3). Thus, the wavelength is about �T ≈ 1.16, which transformed to the dimensional
variables yields the wavelength of �t ≈ 0.1 sec. An additional observation is that the pressure
curves, P1(X, T ), are not symmetric as a function of T around P1 = 0.7; this nonsymmetric behavior
can be also observed in Fig. 7(a).

V. CONCLUSIONS

In this study, we investigated the effects of contact angle hysteresis on the propagation of
sound waves in a long channel with Cassie state boundaries. The model that we propose consists
of a coupled system of a nonlinear PDE for the pressure propagation which is affected by the
first- and second-order derivatives of the area relative to the pressure and an algebraic nonlinear
equation for the area dependence on the pressure, under the assumption of negligible viscous effects.
Our numerical approach enabled us to solve this coupled system under the assumption of contact
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angle hysteresis, which is the dominant cause for energy dissipation when viscous effects may be
neglected.

Our model enables us to estimate the speed of signal propagation, which depends on a dimension-
less number

√
K ; see Sec. II. For example, in this study we portrayed the behavior of waves which

propagate in the tube filled with water approximately 30 times slower than the speed of sound in
water. In the case of sinusoidal wave in the inlet, we obtained harmonic waves for the pressure, and
square waves for the location of the contact line. In the case of a Heaviside signal in the inlet we
obtained an initially propagating pressure front and later slowly decaying oscillations. Moreover,
our results indicate that the hysteresis occurs only in a part of the channel, where in the rest of it the
contact line is pinned, and the pressure oscillates together with the contact angle (which is always
between its advancing and receding values). Sometimes (as in Fig. 6) the hysteresis (in a part of
the channel) occurs during the whole simulation time in which case in a part of the channel the
liquid height, H , is fixed and the other part of the contact line oscillates during the whole simulation
period, where sharp angles may form between the two (steady and moving) parts of the contact line.
See movies in the Supplemental Material [44]. In other cases (as in Figs. 7 and 8) the hysteresis (in a
part of the channel) occurs only during an initial transient, and after this transient period, the contact
line remains in a nonuniform steady state throughout the tube. This behavior will eventually lead
to a steady state with constant pressure, but nonuniform values of contact line height and contact
angle, which depend on spatial position along the tube.

To conclude, in this interaction between acoustics and the triple-phase contact line, as well as the
hysteresis of the wetting angle, highly nonlinear acoustic equations emerge, which are not described
in previous literature to our best knowledge. The equations, together with their derivation and wave
solutions, constitute a unique kind of wave, where hysteresis of the contact line facilitates significant
and unusual energy dissipation. While the present study is motivated by academic interests, these
waves may also be used in practical applications, for instance, as a way to filter acoustic noises of
specific amplitudes or frequencies, or to assess a Cassie state through acoustics.

The authors report no conflict of interest.

APPENDIX A: DERIVATION OF THE GOVERNING LEADING ORDER SYSTEM

In this section we shall present our derivation of Eqs. (13). Let us start our discussion from
Eq. (9a). Substituting the expansions in Eqs. (10) and (12) into Eq. (9a), we get that

ε1

{
(1 + Kε1A1)

∂ρN,1

∂T
+ K (1 + ε1ρN,1)

∂A1

∂T
+ ∂

∂X
[(1 + Kε1A1)(1 + ε1ρN,1)U ]

}
= 0. (A1)

Now, dividing by ε1 and using the chain rule for A1[P1(X, T )], we obtain at leading order Eq. (13a).
Next, let us consider Eq. (9b). First, note that

∂ (ρNUA)

∂T
= U

∂ (ρN A)

∂T
+ ρN A

∂U

∂T
,

so that by Eq. (9a), it follows that

∂ (ρNUA)

∂T
= −ε1U

∂

∂X
(AρNU ) + ρN A

∂U

∂T
.

Substituting this into Eq. (9b), we get that

− ε1U
∂

∂X
(AρNU ) + ρN A

∂U

∂T
+ ε1

∂ (ρNU 2A)

∂X
+ A

∂P1

∂X
= 0. (A2)
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Thus, substituting the expansions in Eqs. (10) and (12) into (A2), we obtain at leading, O(1) order
with respect to ε1, that

∂U

∂T
+ ∂P1

∂X
= 0, (A3)

exactly as it was stated in Eq. (9b).
Derivation of Eq. (9c) is trivial.

APPENDIX B: DISCUSSION ON THE PRESSURE OF THE GAS IN THE GROOVES

Our model assumes constant atmospheric pressure at the gas phase. This does not require
specifically that the compressibility of the gas is negligible, but rather that the timescale in which
the gas reaches equilibrium is much smaller than that of acoustic waves. Since the gas is open to
atmospheric pressure at both the inlet and outlet, equilibrium means constant atmospheric pressure,
as assumed in this study. Nonetheless, we can write a condition allowing us to neglect pressure
changes in the gas, even without reaching equilibrium (flow of the gas to the surroundings via the
vertical grooves). For this strict lower limit, the change in capillary pressure within the wave cycle
needs to be of order of magnitude greater than the change in the pressure within the gas for exactly
the same cycle. In other words, the requirement which allows us to neglect the pressure changes in
the gas in dimensional notation is as

∂a1

∂ p1
� ∂a1

∂ pgas
, (B1)

where p1 and a1 denote the first-order corrections for the pressure and area of the liquid, and pgas is
the pressure of gas in the gas-filled area in the groove. Now, since according to the ideal gas law,

pgas = Nm̃gasRT
(a0,gas − a1)

,

where m̃gas denotes the gas mass per unit length in x direction, N is the number of grooves, a0,gas

denotes the combined unperturbed area of the gas phase in the grooves, R is the ideal gas constant,
and T is temperature, we get that

a1 = a0,gas − Nm̃gasRT
pgas

,

which implies that

∂a1

∂ pgas
= Nm̃gasRT

p2
gas

= a0,gas − a1

pgas
. (B2)

In order to satisfy Eq. (B1) we need to compare the value obtained from Eq. (B2) with the gradients
appearing within the cycle, as shown in Fig. 5. Scaling arguments immediately give a simple
requirement of a1 � a0,gas.

APPENDIX C: DERIVATION OF THE DEPENDENCE OF AREA ON PRESSURE

1. Hydrophobic case

Equation (18) is coupled with the following equations, which follow from geometric relations.
First, since the cross section of the liquid constitutes an arc of a circle inside each groove, we
obtain the following relation between the opening angle of the cross section of the liquid, θo(x, t ),
its radius of curvature, rc(x, t ), and the distance between the two contact lines inside the groove or
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equivalently the distance between the two ends of the arc, w(x, t ),

sin

(
θo(x, t )

2

)
= w(x, t )

2rc(x, t )
. (C1)

Next, since as it possible to observe, the complementary angle of the contact angle, π − θ f , half
the opening angle, θo(x, t )/2, and the inclination angle of the groove wall, θs > 0, sum up to a right
angle, which leads to

π

2
+ θo(x, t )

2
+ θs = θ f (x, t ). (C2)

Moreover, as it is easy to verify, the distance between the two contact lines inside the groove,
w(x, t ), is related to the opening length of the groove, wb, the thickness of the liquid inside the
groove, h(x, t ), and the inclination angle of the groove wall, θs, as follows:

w(x, t ) = wb − 2h(x, t ) tan (θs). (C3)

Substituting the scaling in Eq. (7) and Eq. (22) into the system in Eqs. (18), (20), and (C1)–(C3),
we get the following dimensionless system of equations:

A(X, T ) = h2
C

r2
t

(
ε−2

2 + ε−1
2

(1 + ng)Wb

{
R2

C (X, T ){θo(X, T ) − sin [θo(X, T )]
}

+ H (X, T )[Wb + W (X, T )]
})

, (C4a)

sin

(
θo(X, T )

2

)
= W (X, T )

2RC (X, T )
, (C4b)

π

2
+ θo(X, T )

2
+ θs = θ f (X, T ), (C4c)

W (X, T ) = Wb − 2H (X, T ) tan (θs), (C4d)

P1(X, T ) = γ f

pChCRC (X, T )
. (C4e)

Next, substituting the expansions in Eqs. (23) into (C4), we get that

1 + ε2A1(P1) = h2
C

r2
t

{
ε−2

2 + ε−1
2

(1 + ng)Wb

(
R2

C (X, T ){θo(X, T ) − sin [θo(X, T )]

}

+ H (X, T )[Wb + W (X, T )]]
)
, (C5a)

sin

(
θo(X, T )

2

)
= W (X, T )

2RC (X, T )
, (C5b)

π

2
+ θo(X, T )

2
+ θs = θ f (X, T ), (C5c)

W (X, T ) = Wb − 2H (X, T ) tan (θs), (C5d)

P1(X, T ) = γ f

pChCRC (X, T )
. (C5e)

Then, using W (X, T ) which is given in Eq. (C5d) and θ0 which according to Eq. (C5c) can be
expressed as

θo(X, T ) = 2(θ f (X, T ) − θs) − π, (C6)
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we get that

1 + ε2A1(P1) = h2
C

r2
t

{
ε−2

2 + ε−1
2

(1 + ng)Wb

[
2WbH (X, T ) − 2H2(X, T ) tan (θs) + R2

C (X, T )

×(2[θ f (X, T ) − θs] − π + sin {2[θ f (X, T ) − θs]})
]}

, (C7a)

Wb + 2RC (X, T ) cos [θ f (X, T ) − θs] = 2H (X, T ) tan (θs), (C7b)

P1(X, T ) = γ f

pChCRC (X, T )
, (C7c)

where we have used basic trigonometric identities, such as

sin (α − π ) = − sin (α) and sin (α − π/2) = − cos (α),

which are valid for any angle α.
Now, using Eq. (C7c), we find that RC can be expressed as

RC (X, T ) = γ f

pChCP1(X, T )
. (C8)

Substituting this into Eqs. (C7a)–Eq. (C7b), we get that

1 + ε2A1(P1) = h2
C

r2
t

{
ε−2

2 + ε−1
2

(1 + ng)Wb

[
2WbH (X, T ) − 2H2(X, T ) tan (θs)

+γ 2
f (2[θ f (X, T ) − θs] − π + sin {2[θ f (X, T ) − θs]})

[pChCP1(X, T )]2

]}
, (C9a)

Wb + 2γ f cos (θ f (X, T ) − θs)

hC pChCP1(X, T )
= 2H (X, T ) tan (θs). (C9b)

Next we recall the definition of ε2, by which it follows that

hC = ε2rt ,

whose substitution into Eq. (C9) leads to

1 + ε2A1(P1) = 1 + ε2

(1 + ng)Wb

[
2WbH (X, T ) − 2H2(X, T ) tan (θs)

+ γ 2
f (2[θ f (X, T ) − θs] − π + sin {2[θ f (X, T ) − θs]})

[pChCP1(X, T )]2

]
, (C10a)

Wb + 2γ f cos [θ f (X, T ) − θs]

pChCP1(X, T )
= 2H (X, T ) tan (θs), (C10b)

which leads to the expression in Eq. (25), where the dimensionless number 	−1
c was defined in

Eq. (26).
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In the pinned contact line case, we need to decide what is the correct sign in the expression in
Eq. (28). Based on Eq. (27), if P1 � 0, we may easily conclude that

π/2 = arccos (0) � arccos
(

1
2 [2H tan (θs) − Wb]	−1

c P1
)
� arccos (−1) = π. (C11)

However, according to Eq. (C4c), θ f should satisfy

θ f = θs + π

2
+ θo(X, T )

2
, (C12)

where it is obvious that θo(X, T ) � 0, and thus π/2 + θo(X, T )/2 > 0. Hence, when looking on
Eq. (28), we may conclude that only the positive root in Eq. (28) is the physical solution in our
case, which yields Eq. (29). To justify that P1 must be nonnegative when θs > 0, let us assume for a
moment that P1 < 0. This assumption implies, instead of Eq. (C11), that

0 = arccos (1) � arccos
{

1
2 [2H tan (θs) − Wb]	−1

c P1
}
� arccos (0) = π/2, (C13)

so that Eq. (C12) cannot hold for both choices of sign in Eq. (28).

2. Hydrophilic case: Geometric considerations and the Young-Laplace relations

Note that the assumption that the capillary number is small, Ca � 1, remains valid also in this
case. Now we assume that in this case the groove has an opposite orientation, which means that
θs < 0. From geometrical considerations, the curvature is negative in this case, namely, rc < 0, and
the equations now become

a(x, t ) = πr2
t + N

(
− r2

c (x, t )

2
{θo(x, t ) − sin [θo(x, t )]} + h(x, t )[wb + w(x, t )]

2

)
,

(C14a)

sin

(
θo(x, t )

2

)
= − w(x, t )

2rc(x, t )
, (C14b)

π

2
− θo(x, t )

2
+ θs = θ f (x, t ), (C14c)

w(x, t ) = wb − 2h(x, t ) tan (θs), (C14d)
γ f

rc(x, t )
= p(x, t ) − pgas. (C14e)

Substituting the scaling in Eqs. (7) and (22) into the system in Eq. (C14), we get the following
dimensionless system of equations:

A(X, T ) = h2
C

r2
t

(
ε−2

2 + ε−1
2

(1 + ng)Wb

{−R2
C (X, T ){θo(X, T ) − sin [θo(X, T )]}

+ H (X, T )[Wb + W (X, T )]
})

, (C15a)

sin

(
θo(X, T )

2

)
= − W (X, T )

2RC (X, T )
, (C15b)

π

2
− θo(X, T )

2
+ θs = θ f (X, T ), (C15c)

W (X, T ) = Wb − 2H (X, T ) tan (θs), (C15d)

P1(X, T ) = γ f

pChCRC (X, T )
. (C15e)
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Substituting the expansion in Eq. (23), isolating W (X, T ), θo(X, T ), and RC (X, T ), as well as using
the definition of ε2 which was prescribed in Eq. (21), we get that our system of equations can be
expressed as

A1(P1) = 2

(1 + ng)Wb

{
WbH (X, T ) − H2(X, T ) tan (θs)

+ 1

2	−2
c P2

1 (X, T )
(2[θ f (X, T ) − θs] − π + sin {2[θ f (X, T ) − θs]})

}
,

(C16a)

Wb + 2 cos pθ f (X, T ) − θs]

	−1
c P1(X, T )

= 2H (X, T ) tan (θs), (C16b)

exactly as it was in the hydrophobic case.
In the pinned contact line case, under the assumption in Eq. (27), we get now that

θ f = θs + arccos
(

1
2 [2H tan (θs) − Wb]	−1

c P1(X, T )
)
, (C17)

where P1 must be negative (P1 < 0), so that

0 = arccos (0) � arccos
(

1
2 [2H tan (θs) − Wb]	−1

c P1
)
� arccos (1) = π/2,

which is needed, since by Eq. (C14c), it follows that

θs < θ f (x, t ) = θs + π

2
− θo(x, t )

2
< θs + π

2
.

In the unpinned contact line case, the inclination angle is negative, namely, θs < 0, and since
W should satisfy W > Wb, we get instead the constraints in Eq. (34), the following ones: if
0 < (θ f ,A/R − θs) < π/2, then P1(X, T ) must be negative and satisfy

	−1
c P1(X, T ) > −2 cos (θ f ,A/R − θs)

Wb
. (C18a)

Otherwise, if π/2 � (θ f ,A/R − θs) < π , then P1(X, T ) must be positive and satisfy

	−1
c P1(X, T ) < −2 cos (θ f ,A/R − θs)

Wb
. (C18b)

The rest remains the same as in the hydrophobic case.

APPENDIX D: NUMERICAL PROCEDURE

In this section we shall combine our results in Secs. II and III, and discuss our methodology
of solution for the resulting system of equations inside the tube, X ∈ [0, 1], in two cases. More
specifically, let us consider the system of equations obtained by combining Eq. (15) and either
Eq. (30) or Eq. (35) in the pinned or unpinned contact line limit, respectively. That is, we solve
numerically the following nonlinear system:

1

K

∂2P1

∂T 2
− ∂2P1

∂X 2
= −∂2A1

∂T 2
, (X, T ) ∈ (0, 1) × (0, Tfinal ), (D1)

where Tfinal denotes some final time, and A1 is given by either

A1(P1) = 2WbH − 2H2 tan (θs)

(1 + ng)Wb
+ 1

(1 + ng)Wb	−2
c P2

1

×
[

2 arccos

{[
H tan (θs) − Wb

2

]
	−1

c P1

}
− π

+ sin

(
2 arccos

{[
H tan (θs) − Wb

2

]
	−1

c P1

})]
(D2)
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or

A1(P1) = 1

2(1 + ng)Wb tan (θs)

[
W 2

b − 4 cos2 (θ f ,A/R − θs)

	−2
c P2

1

]

+

(
2(θ f ,A/R − θs) − π + sin

{
2[θ f ,A/R − θs]

})
(1 + ng)Wb	−2

c P2
1

. (D3)

We solve this system subject to two sets of supplementary conditions, as is detailed below.
Case 1: In this case we assume that the supplementary conditions are given by

P1(X = 0, T ) = A sin (ωT ), T ∈ (0, Tfinal ),

P1(X = 1, T ) = 0, T ∈ (0, Tfinal ),

P1(X, T = 0) = ∂P1

∂T

∣∣∣∣
T =0

= 0, X ∈ [0, 1].

(D4)

Case 2: In this case we assume that the supplementary conditions are given by

P1(X = 0, T ) = B Heaviside(T ), T ∈ (0, Tfinal ),

∂P1

∂X

∣∣∣∣
X=1

= 0, T ∈ (0, Tfinal ), (D5)

P1(X, T = 0) = ∂P1

∂T

∣∣∣∣
T =0

= 0, X ∈ [0, 1],

where we use the following smooth approximation for the Heaviside function:

Heaviside(T ) := 1

1 + exp[−k(T − 0.2)]
,

where k > 1 is some fixed constant (in our runs we set k = 7).
We discretize our domain by an equi-spaced (with increment size �X ) grid containing I nodes,

which is regular near X = 0 and either regular (in Case 1) or staggered with a ghost point near
X = 1, which is a convenient method when imposing Neumann boundary conditions; see, e.g.,
[45,46] (in Case 2). Further, we discretize time with N time levels and time step size �T . Thus,
in each time level we solve 2I equations with 2I unknowns, Pn

1,1, . . . , Pn
1,I , An

1,1, . . . , An
1,I , where we

use the following notation:

Pn
1,i = P1(i�X, n�T ).

Equation (D1) is discretized up through order O(�X 2,�T 2), using the Crank-Nicolson scheme
[47], so that at interior points (i = 2, . . . , I − 1) it yields the following equations:

1

K

Pn+1
1,i − 2Pn

1,i + Pn−1
1,i

�T 2
− 1

2�X 2

[(
Pn+1

1,i+1 − 2Pn+1
1,i + Pn+1

1,i−1

) + (
Pn

1,i+1 − 2Pn
1,i + Pn

1,i−1

)]

= −An+1
1,i − 2An

1,i + An−1
1,i

�T 2
. (D6)

Equation (D6) at i = 1, I , is modified to take into account the boundary conditions near X = 0 and
X = 1 in the appropriate manner. This allows us to fill in the first I rows of the mass matrix and the
forcing term vector, which is based on the solution from the previous time level.

The nonlinear algebraic in Eqs. (D2) or (D3) can be linearized in the following manner. Let us
assume that in a general case there exists a function G, which is determined according to Eqs. (D2)
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or (D3), such that

A1(P1) = G(P1). (D7)

If we assume that the time step is sufficiently small, so that 0 < �P1,i := Pn+1
1,i − Pn

1,i � 1 for all
nodes i = 1, . . . , I , then for all i = 1, . . . , I we may expand the expression in Eq. (D7) in �P1,i

around Pn
1,i up through order O(�P2

1,i ), as follows:

An+1
1,i = G

(
Pn

1,i + �P1,i
)

= G
(
Pn

1,i

) + �P1,iG
′(Pn

1,i

) + O
(
�P2

1,i

)
= An

1,i + �P1,iG
′(Pn

1,i

) + O
(
�P2

1,i

)
, (D8)

where G′(Pn
1,i ) := dG/dPn

1,i. This yields the following I equations:

An+1
1,i − G′(Pn

1,i

)
Pn+1

1,i = An
1,i − G′(Pn

1,i

)
Pn

1,i, (D9)

which allows us to fill the missing rows, i = I + 1, . . . , 2I, of the mass matrix and the forcing term
vector.

The main obstacle in this procedure, which is otherwise straightforward, is to determine the
correct form for G′, which is a discontinuous function at the corners of each hysteresis cycle (see
Fig. 6). In order to get convergence in time, we need to smooth G′. Let us discuss our way to
achieve this smoothing. Note that in all our simulations we start in the pinned mode, so for n � 2
we calculate G′ based on differentiating Eq. (D2) with respect to P1. Thus, let us assume that n > 2.
First, knowing the value of Pn

1,i we calculate the contact angles, according to

θn
f ,i = θs + arccos

(
1

2
[2Hn

i tan (θs) − Wb]	−1
c Pn

1,i

)
, (D10)

for i = 1, . . . , I, and irrespective if θ f ,R < θn
f ,i < θ f ,A or θn

f ,i � θ f ,A or θn
f ,i � θ f ,R for all

i = 1, . . . , I, we calculate the corresponding functions:

G′
i,pinned := G′(Pn

1,i

)
, by differentiating (D2),

G′
i,unpinned-A := G′(Pn

1,i, θ f ,A
)
, by differentiating (D3),

G′
i,unpinned-R := G′(Pn

1,i, θ f ,R
)
, by differentiating (D3). (D11)

Further, for all i = 1, . . . , I , we calculate the following smooth approximations to step and Heavi-
side functions:

χpinned,i := 1

1 + exp [m(θ f ,i − θ f ,A)]
+ 1

1 + exp [m(θ f ,R − θ f ,i )
] − 1,

χA,i := 1

1 + exp [m(θ f ,A − θ f ,i )]
,

χR,i := 1

1 + exp [m(θ f ,i − θ f ,R)]
, (D12)

where m � 1 is some fixed parameter prescribed by the user. In our simulations we set m = 20, but
it appears that our simulations are not sensitive to the specific value of m. Note that

χpinned,i =
{

1, if θ f ,R < θn
f ,i < θ f ,A,

0, if θn
f ,i > θ f ,A or θn

f ,i < θ f ,R,
(D13)
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and smoothly increases/decreases between 0 and 1. Further,

χA,i =
{

1, if θn
f ,i > θ f ,A,

0, if θn
f ,i < θ f ,A,

(D14)

and

χR,i =
{

1, if θn
f ,i < θ f ,R,

0, if θn
f ,i > θ f ,R.

(D15)

In other words, χpinned, χA, and χR are indicators, which indicate the mode of contact line motion:
pinned, advancing, and receding, respectively.

Next, in order to verify if an advancing or a receding mode of motion of node i should be
interchanged by the pinned mode, we define �Hn

i in the following manner:

�Hn
i :=

{
0, if θ f ,R < θn

f ,i < θ f ,A,

Hn
i − Hn−1

i , if θn
f ,i � θ f ,A or θn

f ,i � θ f ,R,
(D16)

where at each time step, n, we set Hn−1
i to be the previous position of the contact line, and then

modify Hn
i according to

(1) if θn
f ,i � θ f ,A,

Hn
i = 1

2 tan (θs)

[
Wb + 2 cos (θ f ,A − θs)

	−1
c Pn

1,i

]
, (D17)

(2) if θn
f ,i � θ f ,R,

Hn
i = 1

2 tan (θs)

[
Wb + 2 cos (θ f ,R − θs)

	−1
c Pn

1,i

]
. (D18)

Now we define two additional (smoothed) Heaviside functions:

χ�H ,A,i := 1

1 + exp (−m�Hn
i )

,

χ�H ,R,i := 1

1 + exp
(
m�Hn

i

) . (D19)

Note that

χ�H ,A,i =
{

1, if �Hn
i > 0,

0, if �Hn
i < 0,

and thus it indicates if node i should be in advancing mode of motion or not. Similarly,

χ�H ,R,i =
{

1, if �Hn
i < 0,

0, if �Hn
i > 0

indicates if node i should be in receding mode of motion or not.
Finally, we define a smooth version of G′ by using the definitions in Eqs. (D11), (D12), and

(D19), as follows:

(G′)n
i := G′

i,pinnedχpinned,i + G′
i,unpinned-AχA,iχ�H ,A,i

+ G′
i,unpinned-RχR,iχ�H ,R,i, i = 1, . . . , I. (D20)

Note that if the various χi’s appearing in Eq. (D20), were the corresponding Heaviside and step
functions (without any smoothing), then the expression in Eq. (D20) should constitute G′(Pn

1,i )
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in accordance with the corresponding mode of motion of node i (in all possible cases). Hence,
smoothing of χi’s actually implies that G′ is determined according to the appropriate mode of motion
for nodes whose mode of motion is far from the corners of the corresponding hysteresis cycle, and
it is a smoothed sum of the derivatives which have a mutual corner on the corresponding hysteresis
cycle for nodes whose mode of motion is in the proximity of a corner.

When (G′)n
i , is calculated for i = 1, . . . , I , according to Eq. (D20), we use it in Eq. (D9), solve

the linear system of equations for Pn+1
1 and An+1

1 , and move to the next time step.
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