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Viscous flows in hyperelastic chambers are relevant to many biological phenomena such
as inhalation into the lung’s acinar region, and medical applications such as the inflation
of a small chamber in minimally invasive procedures. In this work, we analytically
study the viscous flow and elastic deformation created due to inflation of such spherical
chambers from one or two inlets. Our investigation considers the shell’s constitutive
hyperelastic law coupled with the flow dynamics inside the chamber. For the case of a
narrow tube filling a larger chamber, the pressure within the chamber involves a large
spatially uniform part, and a small-order correction. We derive a closed-form expression
for the inflation dynamics, accounting for the effect of elastic bistability. Interestingly, the
obtained pressure distribution shows that the maximal pressure on the chamber’s surface
is greater than the pressure at the entrance to the chamber. The calculated series solution
of the velocity and pressure fields during inflation is verified by using a fully coupled finite
element scheme, resulting in excellent agreement. Our results allow the estimation of the
chamber’s viscous resistance at different pressures, thus enabling us to model the process
of inflation and deflation.

Key words: low-Reynolds-number flows, nonlinear instability

1. Introduction

The inflation of elastic balloons has been extensively investigated in the past, mainly
because the corresponding dynamics depend on both the flow and the balloon’s material
elasticity model. The inflation of a toy balloon or a spherical membrane was studied
thoroughly by Beatty (1987). In his work, Beatty (1987) has presented an analysis of
an incompressible, isotropic hyperelastic spherical pressurized membrane. According to
his work, and similar results by Treloar (1975), the Mooney–Rivlin elasticity model
successfully captures most of the overall physical effect. The majority of the research done
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so far considered hydrostatic uniform pressure distribution within the chamber and the
determination of pressure as a constant parameter that uniformly affects the elastic walls
(Treloar 1975; Needleman 1977; Beatty 1987; Mangan & Destrade 2015; Vandermarlière
2016; Hines, Petersen & Sitti 2017).

Balloons with controlled inflation are used in medical applications such as pleural
pressure assessments (Milic-Emili et al. 1964) and enteroscopy (Yamamoto et al.
2001). A recent study by Manfredi et al. (2019) shows a promising biomedical
application of a soft robot for a colonoscopy, which utilizes a double-balloon system for
achieving inchworm-like crawling while bracing against the colonic walls. Haber et al.
(2000) investigated alternating shear flow over a self-similar, rhythmically expanding
hemispherical depression. Quasi-steady creeping flow in models of small airway units of
the lung was investigated by Davidson & Fitz-Gerald (1972). Ilssar & Gat (2020) studied
the inflation and deflation dynamics of a liquid-filled hyperelastic balloon, focusing on
inviscid laminar flow. In those systems, the characteristic time it takes for the pressure
to reach a constant uniform value in a chamber is assumed to be much shorter than the
time it takes for the fluid to pass through the tubes (based on the viscous resistance).
However, to assess the fluid and elastic shell’s dynamics, a complete mathematical
model describing the system’s fluid–structure interaction at low Reynolds numbers is
needed. The study of the fluid–structure interaction dynamics of low-Reynolds-number
incompressible liquid flows and elastic structures may help introduce a new level of control
in fluid–structure-based autonomous systems due to the presence of viscous force (Elbaz
& Gat 2014, 2016).

In the soft-robotics field, recent studies show the propulsion of elastic structures
embedded with internal cavities while controlling pressures or flow rates at the network’s
inlets (Fei & Gao 2014; Overvelde et al. 2015; Fei & Pang 2016; Gamus et al. 2017;
Gorissen et al. 2019; Siefert et al. 2019; Ben-Haim et al. 2020; Salem et al. 2020). In the
case of fluidic actuation, several works study variations of the well known ‘two-balloon
system’, whereas others study networks of multiple connected chambers (Treloar 1975;
Dreyer, Müller & Strehlow 1982; Glozman et al. 2010; Ben-Haim et al. 2020). As shown
by these studies, for some given values of the pressure, multiple solutions for the volume
are possible. Since the hyperelastic spherical membranes are multistable systems, it allows
us to selectively inflate each balloon to one of its stable states by varying the input
according to a particular carefully synthesized profile. Consequently, it can pave the way
toward manufacturing soft robots that utilize minimal actuation to produce highly complex
locomotion.

In this work, we examine the effect of elasticity on transient creeping flow in the bistable
hyperelastic chambers. The chamber is assumed to be an ideal sphere. The Stokes equation
governs the flow field, while Mooney–Rivlin constitutive laws model the elastic chamber.
The fluidic pressure within the balloon is not uniform and cannot be directly determined
from the known Mooney–Rivlin relation. The fluidic pressure distribution in the chamber
is estimated by balancing the fluidic pressure with the total force on the elastic membrane.
Since this force is obtained by integrating the pressure distribution (which depends on the
angle θ ), it receives a different value than the value obtained in the hydrostatic models.

This work’s structure is as follows. In § 2, the geometry, relevant parameters and
physical assumptions are defined. In § 3, the hyperelastic Mooney–Rivlin constitutive
law is presented. The strain energy function is analysed in order to present the bistable
phenomenon. Section 4 presents closed-form solutions of the governing equations,
describing the flow field within an expanding chamber. In § 5, two different physical cases
are described. The case of dictated inlet mass rate coupled by the hyperelastic model is
described in § 5.2, where numerical verification of the fully coupled model is presented.
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Hyperelastic chamber
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Figure 1. Illustration of the system under investigation, consisting of a hyperelastic chamber, as well as a fixed
inlet tube and a massless outlet tube, both having identical radius and length. The bottom of the chamber is
held fixed during the inflation, while its centre is allowed to move.

In § 5.3, we present the second case where the inlet pressure is dictated and the stretching
of the hyperelastic sphere is governed by the flow dynamics. Section 6 examines the
dynamic behaviour of two interconnected bistable chambers. Concluding remarks are
presented in § 7.

2. Problem formulation

In this section, we present the problem definition, along with the physical parameters
relevant to the analysis and the small non-dimensional parameters. The examined
liquid-filled chamber is illustrated in figure 1. Here, a spherical geometry is assumed (the
validity of this assumption will be verified by numerical simulation in § 5.2). A spherical
hyperelastic chamber with a stress-free radius of r0 is connected to one or two rigid tubes
with radius a and length �. For simplicity, we assume identical tubes in the inlet and the
outlet. Here, the flow field inside the chamber and tubes is considered incompressible,
Newtonian, and with negligible inertial effects. The fluid’s axial velocity inside the tube is
uz, and the volumetric flux rate is denoted by q(t) (where qin(t) refers to the flow entering
the body from the inlet tube and qout(t) refers to the flow moving from the body through the
outlet tube). The relevant variables and parameters are: the time t; the axial coordinate and
symmetry axis z; and the radial coordinate s of the cylindrical system used to describe the
tubes. Axisymmetry allows us to eliminate the azimuthal angle of the cylindrical system.
Furthermore, the pressure and flow velocity fields of the entrapped fluid are p(t, s, z) and
v(t, s, z), while its constant density and dynamic viscosity are denoted by ρ and μ. The
chamber’s dynamics are approximated by a single degree of freedom, represented here by
the chamber’s instantaneous radius, denoted by η(t). For spherical geometry, a coordinate
system is chosen so that one of the coordinates remains constant on the boundary. Here,
{r, θ, φ} are the coordinates of a moving spherical system, located at the centre of the
chamber, where θ is the polar angle, measured from the axis of symmetry to the radial
coordinate r, and φ is the azimuthal angle, revolving around the axis of symmetry, z. The
Cauchy stress tensor of the flow is denoted as σ f . The stress-free shell’s thickness is w0,
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which is considered to be much smaller than the stress-free chamber’s radius, namely
w0 � r0.

The following analysis utilizes three small parameters, including the ratio between the
radius of the tubes and the radius of the stress-free chamber (εa, denoted hereafter as the
tube–chamber radii ratio),

εa = a
r0

� 1, (2.1)

the slenderness of the tubes (εt, denoted hereafter as the tube slenderness),

εt = a
�

� 1 (2.2)

and the last small parameter in the analysis is taken as the ratio between the viscous stresses
and the overall pressure in the chamber (ε, denoted hereafter as the chamber viscous
resistance parameter), defined by

ε = μv∗

r0p∗ � 1, (2.3)

where v∗ is the characteristic flow velocity in the chamber and p∗ is the characteristic
pressure of the system. For the following analysis, we shall normalize the physical
variables by considering the characteristic values of the problem as follows:

V = v

v∗ , ̂∇ = r0∇, σ̂ f = σf

p∗ , R = r
r0
, λ = η

r0
, P = p

p∗ , T = t
r0/v∗ ,

(2.4a–g)

where λ(T) denotes the stretch of the chamber and R is the normalized radial coordinate.

3. Constitutive model for a hyperelastic membrane

This section presents the constitutive law that governs the spherical shell dynamics. We
consider a thin-shelled, spherical chamber made of incompressible hyperelastic isotropic
material. Finite elasticity theory dictates a known form of the elastic strain energy density
ψ(λ), which depends only on the relative stretch λ(T). Moreover, the elastic strain energy
density satisfies ψ(1) = 0. Different types of hyperelastic models differ in the type of
material and the elastic strains experienced without failing. The most common models are
neo-Hookean, Mooney–Rivlin, Ogden, Gent and Biological tissue (Ogden 1972).

The material is assumed to be incompressible, which leads to the relation between the
pressurized and the stress-free states, given by r2w ≈ r2

0w0. Thanks to this relation, the
chamber’s instantaneous thickness is eliminated. To capture the chamber’s bistability, we
use the two-parameter Mooney–Rivlin model.

Under the above assumptions, and considering incompressibility, the normalized solid’s
Mooney–Rivlin strain energy function is given by (Ogden 1972; Beatty 1987)

ψ̂(λ) = 2λ2 + 1
λ4 − 3 + α

(

λ4 + 2
λ2 − 3

)

, (3.1)

where α = s2/s1 is the ratio between two empirically determined constants, commonly
denoted as the Mooney–Rivlin parameters.

In this study, the Mooney–Rivlin parameters are chosen as s1 ≈ 1.5 MPa and s2 ≈
0.15 MPa (Beatty 1987; Treloar 1975). The normalized (3.1) was obtained by using the
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Figure 2. (a) The solid blue curve is a characteristic stretch–pressure curve of a single elastic chamber with
α = 0.1. The solid orange curve is the effective potential energy function (3.2), corresponding to the constant
pressure PSS = 2.75, illustrated by the dashed black line; green and red dots are the stable and unstable
equilibrium radii. (b) Characteristic normalized stretch–pressure curve of a single elastic chamber according to
(3.3) with α = 0.1. The extrema are marked, and the bistable region is marked in grey. Solid curves are stable
branches and dashed curves are unstable ones. (c) The solid blue line is the exact solution of (3.3) calculated
numerically. The dashed curves are the approximated solutions obtained in (A8)–(A9). (d) The evolution of the
extremum values of pressure PA,PB and stretch λA, λB as a function of the small parameter α. The solid curves
are the exact values, and the dashed curves are the asymptotic approximations given in Appendix A ((A3), (A4)
and (A7)).

normalization ψ∗ = s1 for the strain energy density function, and the magnitude of the
parameter α is O(10−1).

We first study the chamber’s static behaviour, where the pressure (without flow) is
dictated. In this case, both the stretch and the pressure are constant, denoted here by λSS
and PSS, respectively. The behaviour mentioned above can be demonstrated by the overall
effective potential energy of the system,

U(λSS; PSS) =
∫

λSS

(

dψ̂
dξ

− ξ2PSS

)

dξ = ψ̂(λSS)− 1
3
λ3

SSPSS. (3.2)

Based on (3.2), figure 2(a) shows a curve of the potential energy function where the
constant pressure is PSS = 2.75. The Mooney–Rivlin relation (3.1), along with the steady
version of the leading-order energy balance (3.2), formulated as ∂U/∂λSS = 0 at constant
pressure PSS, yields a relation between stretch, λSS, and pressure, PSS, in equilibrium
condition

PSS =
(

1
λ2

dψ̂
dλ

)∣

∣

∣

∣

∣

λSS

= 4

[

1
λSS

− 1
λ7

SS
+ α

(

λSS − 1
λ5

SS

)]

; 0 < α � 1. (3.3)

This well known relation was extensively leveraged to describe the quasi-static inflation
of spherical balloons (Treloar 1975; Beatty 1987; Ben-Haim et al. 2020) for spatially
uniform pressures. As seen from figure 2(a), figure 2(a,b) showing the relation in (3.3)
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with α = 0.1, the uniform pressure of the chamber is not monotonic with respect to the
radius. Therefore, the inverse relation, describing the chamber’s radius as a function of
the pressure, cannot be directly extracted. The curve PSS(λSS) in figure 2(b) has two
bifurcation points, described by a local maximum point at (λA,PA), and a local minimum
point at (λB,PB). This figure shows a bifurcation, which occurs when the pressure enters or
exits the range between the local extrema, PB < PSS < PA, illustrated in grey. Asymptotic
approximations for the bifurcation points of the equilibrium curve, PA,PB, λA and λB,
appear in Appendix A. The evolution of those extrema as a function of the small parameter
α is presented in figure 2(d). Asymptotic approximations for the solution of the equilibrium
equation (3.3), appear in Appendix A. Those approximations are plotted in figure 2(c)
with dashed lines on the solid exact solution curves, represented by the inverse relation
λSS(PSS).

Analysing the effective potential energy U(λSS; Pss) in (3.2), using the second derivative
with respect to λSS, it can be proved that the right and left branches of PSS(λSS) where
1 < λ < λA or λB < λ are stable equilibria and satisfy

∂2U
∂λ2

SS

∣

∣

∣

∣

∣

PSS

= dPSS

dλSS
> 0. (3.4)

Conversely, the intermediate branch λA < λSS < λB is an unstable region satisfying
∂2U/∂λ2

SS < 0. This is precisely the bistability phenomenon.

4. Series solution of the flow field within an expanding chamber

In this section, the governing equations of the flow within the chamber will be formulated,
as well as the problem’s boundary conditions. An analytical series solution will then
be presented, describing the velocity field and the flow’s pressure distribution inside the
spherical chamber.

4.1. Formulation and analysis of the governing equations
Under the assumptions discussed above, the momentum and continuity equations
governing the fluid’s behaviour expressed in the moving spherical frame,

ρ

(

∂v

∂t
+ v · ∇v + ẑ

d2

dt2

√

η2 − a2
)

= −∇p + μ∇2v − ρgẑ, (4.1a)

∇ · v = 0, (4.1b)

where the third term in the left-hand expression in the momentum equation (4.1a)
describes the acceleration of the moving spherical frame, centred on the chamber’s moving
centre, relative to a stationary frame.

Assuming the flow in tubes is fully developed and axisymmetric, the volumetric flux is
given by

q(t) = −πa4

8μ
∂pt

∂z
, (4.2)

where ∂pt/∂z is the pressure gradient along the tube. Since the tube slenderness εt � 1 we
shall assume a constant pressure gradient. Normalization of (4.2) yields the characteristic
flow rate as q∗ = πa2u∗

z where u∗
z = a2p∗/μ� is the characteristic axial component of
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the fluid velocity in the tube. An integral flow balance yields the relation between the
characteristic velocity in the tube and the characteristic velocity of the flow within the
chamber, as v∗ = ε2

au∗
z . Substituting the characteristic values into the chamber viscous

resistance parameter (2.3), relates it to the other small parameters, as follows:

ε = a4

r3
0�

= ε3
aεt � 1. (4.3)

From relation (4.3) it is clear that ε is dependent merely on the geometry of the system,
providing a simple relation between the hydrostatic and deviatoric stresses. Hence, an
appropriate geometry can be defined in order to design an efficient and controllable
system. We consider negligible gravity, i.e. ρgr0/p∗ � 1 (where g is the gravitational
acceleration), and define a Reynolds number in the chamber as Re = ρv∗r0/μ � 1. Since
the Reynolds number is small, the flow’s inertia may be neglected. Therefore, by utilizing
the non-dimensional quantities specified in (2.4a–g), the fluid’s motion (4.1) is governed
by the Stokes equations for creeping flow with an implicit time variable,

̂∇ · V = 0, ̂∇P = ε̂∇2V + O(εRe). (4.4a,b)

The validity of these equations is weakened at the vicinity of the connections to the
tubes since in those regions, the characteristic velocity is approximately u∗

z rather than
v∗. At a distance O(L) from the tube (where a < L < r0), the velocity scale is q∗/L2 and
hence the Reynolds number is ρq∗/μL < ρq∗/μa. Thus, a sufficient condition for global
neglect of inertia is

q∗ � πμa
ρ
. (4.5)

From the non-dimensional relation (4.4a,b), in the sphere, the pressure is spatially
uniform at leading order and the viscous flow will generate small spatially varying
corrections. Moreover, in order to get a better understanding of the chamber resistance
small parameter’s physical meaning, we may use the dynamical stress tensor in the fluid
domain defined by the constitutive relation σf = −pI + μ[∇v + (∇v)T] where I is the
3 × 3 unit matrix. In the most general constitutive equation, σ f consists of the linear
and instantaneous dependence of the deviatoric stress, plus the hydrostatic stress, −pI ,
stemming from the static pressure. Normalization of the total stress tensor yields

σ̂f = −PI + ε[̂∇V + (̂∇V
)T]. (4.6)

As one can notice from (4.6) the velocity field is not included at the leading order.
Mainly, the leading order of the problem is a case of fully developed uniform pressure
without any velocities. Suppose the flow is dictated by controlled pressure or flux at the
inlet, the velocity is generated, and additional small deviatoric stress is created, which
quasi-statically leads the system to another hydrostatic state.

The axisymmetric Stokes equations (4.4a,b) can be solved in spherical polar coordinates
using a series expansion (Happel & Brenner 2012). Consider the non-dimensional Stokes
stream function Ψ (R, θ, T). The flow velocity components VR and Vθ are related to the
Stokes stream function Ψ (R, θ, T) through

VR = 1
R2 sin θ

∂Ψ

∂θ
; Vθ = − 1

R sin θ
∂Ψ

∂R
, (4.7a,b)

where VR and Vθ are the radial and tangential velocity components, respectively. By
applying the curl operator to the momentum equation (4.4a,b) and using several simple
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algebraic manipulations, the Stokes equation can be reduced to a fourth-order biharmonic
equation obtained in terms of the Stokes stream function as follows:

E2(E2Ψ ) = 0, (4.8a)

∇P = −ε φ̂

R sin θ
× ∇(E2Ψ ), (4.8b)

where in spherical coordinates,

E2 = ∂2

∂R2 + sin θ
R2

∂

∂θ

(

1
sin θ

∂

∂θ

)

. (4.9)

Equation (4.8a) is solved by separation of variables, and (4.8b) is solved by integration
with respect to the radial and tangential directions. However, for brevity we will not present
the full calculation of the solution here. A solution for the stream function in spherical
coordinates is of the form

Ψ (R, θ; T) = A0(T)+
∞
∑

n=2

[An(T)Rn + Cn(T)Rn+2]Jn(cos θ), (4.10)

where An(T) and Cn(T) are unknown functions, determined by the boundary conditions,
and Jn(ξ) are the Gegenbauer functions of the first kind of order n (and degree
−1/2). Happel & Brenner (2012) have exhaustively investigated the properties of these
Gegenbauer functions in connection with the hydrodynamic application. For our present
purposes, their properties can be deduced most readily from their relation with the
corresponding Legendre functions of the first kind Pn(ξ) as

Jn(ξ) = Pn−2(ξ)− Pn(ξ)

2n − 1
= − 1

(n − 1)!

(

d
dξ

)n−2 (
ξ2 − 1

2

)n−1

; n � 2. (4.11)

In the degenerate cases n = 0, 1 we define J0(ξ) = 1 and J1(ξ) = −ξ , respectively.
Using the definition of the Stokes stream function (4.7a,b), we describe the series solution
of the velocity field and pressure distribution as

VR(R, θ; T) = −
∞
∑

n=2

[

An(T)Rn−2 + Cn(T)Rn
]

Pn−1(cos θ), (4.12a)

Vθ (R, θ; T) =
∞
∑

n=2

[

nAn(T)Rn−2 + (n + 2)Cn(T)Rn
] Jn(cos θ)

sin θ
, (4.12b)

P(R, θ; T) = P0(T)− ε

∞
∑

n=2

[

2(2n + 1)
n − 1

Rn−1Cn(T)
]

Pn−1(cos θ), (4.12c)

where P0(T) should be determined through the physical boundary conditions defined by
pressure at the chamber’s inlet and outlet. The unknown functions, An(T) and Cn(T),
should be determined by requiring the kinematic boundary conditions of the flow to be
satisfied. Note that the series solutions (4.12) are an exact solution of (4.8).
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Viscous flow fields in hyperelastic chambers

4.2. Formulation and discussion of the boundary conditions
Next, we are interested in finding the unknown functions, An(T) and Cn(T) by imposing
two boundary conditions. The first boundary condition is obtained from the assumption
that there is no penetration into the chamber’s boundaries, and the second boundary
condition is the no-slip condition. The Eulerian description of a material point located
on the chamber’s wall is given by r = η(t)r̂, where r̂ = (sin θ cosφ, sin θ sinφ, cos θ) is
the radial direction unit vector; thus, the material point’s velocity is ˙̂r = η̇r̂ + ηθ̇ θ̂ , where
θ̂ = (cos θ cosφ, cos θ sinφ,− sin θ) is the polar direction unit vector. We recall that the
fluid’s behaviour is described in the moving spherical frame; therefore, the first term is
a radial component, while the polar component is created due to the constraint of the
rigid inlet/outlet tube. Assuming that the deformation is spherical, the following kinematic
constraint must be satisfied:

θ − κθi(t)
θf (t)− θ

= θ(0)− κθi(0)
θf (0)− θ(0)

, (4.13)

where κ indicates whether there are both inlet and outlet tubes (when κ = 1), or only
an inlet tube (when κ = 0). Moreover, θi(t) and θf (t) are angles corresponding to the
connections between the tubes and the chamber (see figure 1). By simple geometric
considerations, we get

θi(t) = sin−1
(

a
η(t)

)

, θf (t) = π − sin−1
(

a
η(t)

)

. (4.14a,b)

Considering the derivative of (4.13) with respect to time will lead to the relation between
θ̇ and θ, θi, θf , θ̇i and θ̇f . Therefore, the material point’s velocity can be rewritten as

˙̂r = r̂
dη
dt

+ θ̂
(θf − θ)κθ̇i + (θ − κθi)θ̇f

θf − κθi
η(t). (4.15)

The result obtained in (4.15) represents the change in the angle of a material point
relative to the initial state. Consequently, the no-penetration and the no-slip conditions
are defined in vector form as

v (r = η(t), θ; t) = ˙̂r + ẑ

⎧

⎨

⎩

κu(out)
z (sout = η sin θ), 0 � θ � θi,

0, θi < θ < θf ,

u(in)z (sin = η sin θ), θf � θ � π.

(4.16)

Here, we assumed a spherical surface at the connection between the tubes and the chamber.
The first vector in (4.16) is the spherical surface velocity that captures the inflation of the
whole chamber, while the second component adds the fluid’s velocity into or out from the
tube. Note that the velocity of the chamber’s centre (the velocity of the moving spherical
frame, centred on the chamber’s moving centre, relative to a stationary frame) should be
subtracted from the fluid’s velocity components that come into or out of the tube. However,
the velocity of the moving spherical frame is negligible relative to the velocity of the flow
in the tube. The wall’s elasticity is expressed in the body’s ability to increase the volume
according to the material’s constitutive laws (hyperelasticity). The asymptotic justification
for neglecting the non-spherical deformation of the chamber appears in Appendix B.

A simple investigation of the boundary condition’s derivative shows singularities at
θ = θi and θ = θf where the known parabolic Hagen–Poiseuille relation is used to describe
the flow inside the tube. Since the pressure distribution represented by the Legendre
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E. Ben-Haim, D. Ilssar, Y. Or and A.D. Gat

series (4.12) is the solution of the second-order differential equation, singularities lead
to a divergent series. In order to avoid the singularities and to get a modified velocity
profile that also takes into account the end effects, we assume a modified flow profile at
the chamber’s inlet (or outlet) as follows:

u(m)z (s, t; εω) = up
z (s, t)+ uc

z(s, t; εω). (4.17)

Here, up
z (s, t) is the known parabolic Hagen–Poiseuille profile

up
z (s, t) = 2q(t)

πa2

[

1 −
( s

a

)2
]

(4.18)

and uc
z(s, t; εω) is an correction profile defined by

uc
z(s, t; εω) = (ω(s; εω)− 1) up

z (s, t)+ γ · q(t)
πa2

[

1 − 4
( s

a

)2 + 3
( s

a

)4
]

ω(s; εω),

(4.19)

where γ is a parameter determined by fitting the velocity profile obtained in a finite
elements calculation. The function ω(s; εω) is defined by ω(s; εω) = − tanh (2/εω)+
tanh ((s/a + 1)/εω)− tanh ((s/a − 1)/εω), and 0 < εω � 1 is an arbitrary small
parameter (denoted hereafter as the smoothing parameter). In fact, ω(s; εω) is a weighted
function making the velocity profile differentiable even at θi and θf . Moreover, it can be
shown that ω(s; εω) = 1 + O(e−1/εω) as εω � 1 and |s/a| � 1 − O(εω). The modified
flow profile has four physical properties. The first is symmetry around the tube’s
radial coordinate, s. The second is the no-slip condition represented mathematically
by zero velocity on the tube boundaries, u(m)z (s = a, t) = 0. The third nulls the radial
velocity gradient at the boundaries, ∂u(m)z /∂s = 0 where s = a. By neglecting O(e−1/εω)
terms, the modified flow profile’s fourth property is keeping the total flow equal to the
Hagen–Poiseuille model’s value (regardless of the choice of γ ). Using non-dimensional
parameters, the boundary conditions become

VR (R = λ) = dλ
dT

+ cos θ
λ2ε̃2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

κU(m)
z

∣

∣

∣

S=ε̃−1 sin θ
, 0 � θ � sin−1(ε̃),

0, sin−1(ε̃) < θ < π − sin−1(ε̃)

U(m)
z

∣

∣

∣

S=ε̃−1 sin θ
, π − sin−1(ε̃) � θ � π,

(4.20a)

Vθ (R = λ) = Γ (θ)− sin θ
λ2ε̃2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

κU(m)
z

∣

∣

∣

S=ε̃−1 sin θ
, 0 � θ � sin−1(ε̃),

0, sin−1(ε̃) < θ < π − sin−1(ε̃),

U(m)
z

∣

∣

∣

S=ε̃−1 sin θ
, π − sin−1(ε̃) � θ � π,

(4.20b)

where,

Γ (θ; ε̃) = Θ(θ)
λε̃√

1 − ε̃2

dλ
dT

; Θ(θ) = (1 + κ)θ − κ(θi + θf )

θf − κθi
, (4.21a,b)

where U (m)
z = u(m)

z /u∗
z is the normalized modified axial velocity in tube, S = s/a is the

normalized cylindrical radial coordinate in tube and ε̃(T) = εa/λ(T) � 1.

937 A18-10

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e,
 o

n 
su

bj
ec

t t
o 

th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

96

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2022.96


Viscous flow fields in hyperelastic chambers

The integral mass conservation equation is given by

qin − κqout = d
dt

[

(1 + κ)πa2

3

√

η2(t)− a2 +
∫ 2π

φ=0

∫ θf (t)

θ=κθi(t)

∫ η(t)

r=0
r2 sin θ dr dθ dφ

]

.

(4.22)

We neglect O(ε̃4) terms, related to the inlet and the outlet section; thus, (4.22) is
normalized and simplified to

dλ
dT

= 1
4λ2 [Qin(T)− κQout(T)] . (4.23)

The time-dependent unknown functions in (4.12), An(T) and Cn(T) are calculated by
imposing the boundary conditions (4.20), where the latter are developed into a generalized
Fourier series of Legendre or Gegenbauer polynomials,

VR (λ, θ; T) =
∞
∑

n=1

Λn(T)Pn(cos θ), Vθ (λ, θ; T) = 1
sin θ

∞
∑

n=2

ϕn(T)Jn(cos θ).

(4.24a,b)
The general Fourier coefficients are

Λn(T) = 2n + 1
2

∫ 1

−1
VR (λ, ξ ; T)Pn(ξ) dξ ≡ 1

λ2ε̃4

[

Λ̃(in)n Qin + Λ̃(out)
n Qout

]

,

ϕn(T) = n(n − 1)(2n − 1)
2

∫ 1

−1
Vθ (λ, ξ ; T)

Jn(ξ)
√

1 − ξ2
dξ ≡ 1

λ2ε̃4

[

ϕ̃(in)n Qin + ϕ̃(out)
n Qout

]

,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(4.25)
where

Λ̃(·)n = 2n + 1
2

∫

I(·)
f (ξ ; ε̃)ω̃(ξ ; ε̃)Pn(ξ)ξ dξ,

ϕ̃(·)n = n(n − 1)(2n − 1)
2

[

Φ(·)λε̃5

4
√

1 − ε̃2

∫ 1

−1
Θ(cos−1(ξ))

Jn(ξ)
√

1 − ξ2
dξ

−
∫

I(·)
f (ξ ; ε̃)ω̃(ξ ; ε̃)Jn(ξ) dξ

]

,

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(4.26)

such that f (ξ ; ε̃) = 2(ξ2 − 1 + ε̃2)− γ (4 − ε̃2 − 4ξ2 + 3ε̃−2(ξ2 − 1)2), the weighted
function is ω̃(ξ ; ε̃) = ω(S = ε̃−1

√

1 − ξ2),Φ(in) = 1, Φ(out) = −1, and the integration’s
intervals are I(in) = [−1,−√

1 − ε̃2] and I(out) = [
√

1 − ε̃2, 1]. Note that the first integral
expression of the ϕ̃n coefficient in (4.26) is negligible with respect to the second integral
expression; therefore, this term can be omitted for simplicity.

4.3. Formulation of the series solution
Substitution of (4.24a,b)–(4.26) into (4.12a) and (4.12b), where R = λ yields two linear
equations that define the unknown functions An(T) and Cn(T). This provides the solution
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E. Ben-Haim, D. Ilssar, Y. Or and A.D. Gat

for the velocity field and the solution is rewritten as

VR = 1
2

∞
∑

n=2

[(

(n + 2)χ−2 − n
)

Λn−1 +
(

χ2 − 1
)

ϕn

]

χnPn−1(cos θ), (4.27a)

Vθ = 1
2

∞
∑

n=2

[(

χ−2 − 1
)

n(n + 2)Λn−1 +
(

n(1 − χ−2)+ 2
)

ϕn

]

χnJn(cos θ)
sin θ

, (4.27b)

where χ(R; T) := R/λ(T) ∈ [0, 1]. The general solution of the pressure distribution can
also be rewritten as follows:

P(R, θ; T) = P0(T)− ε

λ

∞
∑

n=1

(2n + 3) ((n + 1)Λn + ϕn+1)

n
χnPn(cos θ). (4.28)

This expression represents the pressure distribution inside the chamber, with unknown
time-dependent functions. Now P0(T) may be determined according to the physical
boundary conditions of the pressures acting on the flow – at the inlet and outlet. The
stretch, λ(T), (and therefore also Λn(λ) and ϕn+1(λ)), may be determined by the wall’s
hyperelastic constitutive model. In the next sections, we present two analyses describing
different physical cases, including the specific hyperelastic constitutive model we used.

5. Results

In this section we obtain the full series solution under various different boundary
conditions. First, we present an empirical estimation of γ by a problem of flow from an
injection tube into a half-space. Then, we present two analyses that describe different
physical cases. In the first case, we present a chamber whose volumetric flow rate is
dictated while the pressure is governed by the chamber’s hyperelastic shell. In the second
case, we present a chamber whose input pressure is dictated while the wall’s hyperelastic
law governs the time-varying chamber’s radius.

5.1. Estimation of γ – flow from an injection tube into a half-space
Assuming the radius of the tube is small relative to the chamber’s radius (εa � 1), the
boundary’s polar angle at the connection point is π − θf = sin−1 (ε̃) = O(ε̃) for the inlet
tube, and θi = sin−1 (ε̃) = O(ε̃) for the outlet tube. We focus on the flow field very close
to the tube–chamber connection where χ → 1 and θ → π for the inlet tube or θ → 0
for the outlet tube. Since ε̃ � 1, it can be modelled as flow from an injection tube into a
half-space.

Several works present numerical analyses for such problems (Weissberg 1962;
Fitz-Gerald 1972; Tutty 1988; Sisavath, Jing & Zimmerman 2001), but there are no
analytical solutions to the best of our knowledge. Thus, in order to examine the flow
field in the connection region, we utilize finite element schemes devised in COMSOL
Multiphysics. In these simulations, the entrapped fluid is modelled according to the
Navier–Stokes equations, assuming that the flow is incompressible and isothermal. A
comprehensive explanation of the numerical simulation will be described in the next part
of the results section, while here we restrict ourselves to describing the basic geometry.
We assumed a long tube (a hundred diameters in length) with unit radius. The boundary
conditions are non-slip and non-penetration into the tube’s edge.
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Viscous flow fields in hyperelastic chambers
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Figure 3. Modified velocity profile (4.17) used as a boundary condition of the chamber solution. The grey
dotted curve is the known parabolic Hagen–Poiseuille profile, obtained by setting γ = 0 in the modified
velocity profile (4.17). The blue line is the velocity profile obtained in the numeric computational fluid dynamics
(CFD) simulation of injection tube into a half-space. The red dashed line is the modified velocity profile (5.1),
with γ = −0.1 and εω = 0.05.

The modified velocity profile we shall use was defined in (4.17); after setting the
non-dimensional variables and neglecting O(e−1/εω) terms, the obtained normalized
relation is

U(m)
z

Q(T)
= 2(1 − S2)+ γ (1 − 4S2 + 3S4). (5.1)

Hence, the parameter γ should be found by fitting the profile (5.1) to the numerical
simulation results, using the least squares method. The best fitted value is γ = −0.1.
The velocity profile obtained in the numeric simulation and the modified velocity profile
we fitted in (5.1) is shown in figure 3. All the parameters used in the simulations are
elaborated in table 1. During the further analysis, we will use the same approximation
(with γ = −0.1). This approximation will be valid as long as ε̃ → 0.

5.2. Case I – dictated inlet flux and hyperelastic wall model
In this case we dictate the volumetric rate into an elastic chamber. The integral mass
conservation equation (4.22) is simplified to

λ(T) =
[

1 + 3
4

∫ T

0
(Qin(τ )− Qout(τ )) dτ

]1/3

. (5.2)

While the stretch function λ(T) is known, as described in (5.2), the inlet pressure
is not dictated and additional data regarding the pressure distribution is obtained from
the hyperelastic constitutive relations. Here, it is worth emphasizing that any general
constitutive elastic law can serve as a basis for subsequent development, even if it
is not bistable or hyperelastic. Integrating the strain density function, ψ(λ), over the
volume of the chamber’s spherical shell and keeping only leading-order terms yields the
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Parameters Notation Value Units

Density ρ 1260 kg m−3

Dynamic viscosity μ 1.1 Pa s
Elastic parameter s1 1.5 MPa
Elastic parameter s2 0.15 MPa
Unstressed radius r0 5 mm
Unstressed thickness w0 50 μm
Tube radius a 1 mm
Tube length � 20 cm

Volumetric flux q 200 mm3 s−1

Radius η 6 mm

Tube slenderness εt 5 × 10−3

Tube–chamber radii ratio εa 2 × 10−1

Smoothing parameter εω 5 × 10−2

Chamber viscous resistance ε 4 × 10−5

Table 1. Summary of physical parameters values used for plotting the analytical (series) solutions of the
dynamic cases. The density and the kinematic viscosity are related to glycerol which is known as a viscous
liquid. The geometric parameters are chosen as the typical value of hyperelastic small chambers used in
Ben-Haim et al. (2020).

leading-order chamber’s strain energy,
∫∫∫

V

ψ(λ) dV = 4πr2
0w0ψ

∗ × ψ̂(λ), (5.3)

where V ≈ w × S is the material (constant) volume of the thin shell, ψ∗ is the
characteristic value of ψ , and ψ̂ is the normalized strain energy density function ψ̂(λ) =
ψ(λ)/ψ∗. The work done by the surface traction acting between two states without body
force is

∫∫

S

∫ η

ξ=r0

( p(ξ, θ) dS) · dξ = 2πr3
0p∗
∫ θf

θ=κθi

∫ λ

ξ=1
ξ2P(ξ, θ) sin θ dθ dξ. (5.4)

Substitution of the pressure’s solution (4.28) into (5.4), and using the mechanical energy
principle which states that the work done by the surface tractions acting between two
equilibrium states without body force is balanced by the change in the total strain energy
(Beatty 1987), allows us to fully define the pressure distribution in the chamber,

P(I)(R, θ; T) = 1
λ2

dψ̂
dλ

− ε

λ

∞
∑

n=1

(2n + 3) ((n + 1)Λn + ϕn+1)

n

×
[

1
2

(

P
(in)
n + κP

(out)
n

)

+ χnPn(cos θ)
]

, (5.5)

where P
(·)
n is the zeroth moment of Pn(ξ) about an origin, defined as

P
(in)
n ≡

∫ −
√

1−ε̃2

−1
Pn(ξ) dξ =

Pn+1

(

−√
1 − ε̃2

)

− Pn−1

(

−√
1 − ε̃2

)

2n + 1
, (5.6a)

P
(out)
n ≡

∫ 1

√
1−ε̃2

Pn(ξ) dξ = −
Pn+1

(√
1 − ε̃2

)

− Pn−1

(√
1 − ε̃2

)

2n + 1
. (5.6b)
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Viscous flow fields in hyperelastic chambers

From order of magnitude analysis in (5.3) and (5.4), we obtain the characteristic
pressure, which depends on the specific hyperelastic model, we use

p∗ = w0

r0
ψ∗. (5.7)

According to the solution obtained in (5.5), the pressure distribution inside the chamber
consists of two parts. The first part is the well known isotropic pressure obtained by Beatty
(1987). This expression represents the isotropic pressure in the leading order, which is
experienced by the chamber’s elastic wall, assuming that the pressure is uniform and equal
to PS(λ) = λ−2 × dψ/dλ. The second expression is the transient developing pressure
profile, εP1(R, θ; ε̃; T), which varies spatially and temporally.

5.2.1. Numerical verification of the fully coupled model
In order to validate the theoretical model, we have utilized commercially available software
(COMSOL Multiphysics) in order to conduct finite element simulations considering the
fully coupled dynamics of the system. In these simulations, the entrapped fluid is modelled
according to the Navier–Stokes equations, assuming that the flow is incompressible and
isothermal. Moreover, the shell is modelled according to the Mooney–Rivlin model,
wherein, contrary to the theoretical model, it is not restricted to a spherical shape. All
the parameters used in the simulations are elaborated in table 1. In all simulations,
the geometry and boundary conditions are taken in correspondence with the problem
statement in § 2. Further, the physics is described by the fluid–structure interaction module
of COMSOL, referring to the chamber as a two-parameter Mooney–Rivlin hyperelastic
solid. This is done while employing a moving mesh formulation to accommodate the
changes of the fluid’s domain. The coupling between the solid and the fluid is carried
out by balancing the fluid’s velocity and the time derivative of the solid’s displacements
and the normal components of their stress tensors at the interface between the solid and
the fluid. The numerical schemes describe the deformation field of the solid utilizing
second-order base functions, where those used to discretize the velocity field and pressure
distribution of the fluid are cubic and quartic, respectively. Finally, the system’s geometry
is described as two-dimensional and axisymmetric to eliminate significant numerical
errors and decrease the computational effort. Furthermore, the meshing of the geometry
was enhanced until low sensitivity to further refinement was achieved. In the final meshing
used in the simulations whose results are presented here, the solid is modelled by
rectangular elements whose grid contains 200 tangential elements and six elements along
with its thickness. Similarly, the tube is modelled by a regular grid having 30 radial and
103 axial elements. Finally, since the geometry of the fluid residing inside the chamber
is of higher complexity, the latter is described by free triangular elements. The maximal
size of these elements is restricted to 0.18 mm. On the boundaries of this region, where the
sensitivity is higher, and the precision is of greater importance, the maximal size is further
reduced to 0.1 mm.

While numerically simulating the dynamics of the fluid-filled chamber, utilizing the two
constant parameters of the Mooney–Rivlin model used in the theoretical computations,
we noticed discrepancies. By examining the numerically computed static pressure-stretch
relation, it was apparent that these discrepancies might originate from errors in the
hyperelastic module of COMSOL Multiphysics version 5.0, in which all the numerical
simulations were carried out. Therefore, to compare the theoretical and numerically
simulated dynamic responses of the fully coupled system, the hyperelastic model used
in the numerical scheme had to be modified. To calibrate this model, we fitted the
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Figure 4. A numerical verification of the fully coupled model. The chamber’s radius is 6 mm, and the
volumetric flux is q = 200 mm3 s−1. The dashed red line is obtained by the analytical (series) solution, which
was calculated based on the first 100 terms in the series. The blue line is obtained in the CFD simulation.
Excellent agreement is observed. (a) Contour curves of the pressure distribution obtained from the simulation
(red curves) and the same contour curves obtained from the series solution (dashed blue curves). The black
non-spherical (pear-shaped) boundary describes the elastic chamber wall obtained from the simulation. (b)
The non-dimensional dynamic pressure along the symmetry axis z. (c) The non-dimensional dynamic pressure
at the chamber wall as a function of the angle θ . (d) The axial velocity of the flow relative to a cylindrical
coordinate system. (e) The axial velocity component of the flow along the axis of symmetry.

pressure-stretch relation of the numerical scheme at a static regime. Namely, we found the
appropriate values of the two Mooney–Rivlin constant parameters, leading to the desired
theoretical static pressure-stretch relation while inflating the chamber to different radii,
corresponding to different stretches. The values of the pressure inside the chamber and its
effective radii were taken a long time after the inflation was finished and after all dynamic
effects had decayed, including the non-spherical modes. As a result, the values used in the
simulations yield a relative error of less than 0.4 % in the pressure-stretch relation at the
presented values.

Figure 4, which compares the theoretical and the numerically simulated pressure
distribution, shows an excellent agreement, thus validating the analytical model and its
underlying assumptions. In addition, a numerical investigation of the pressure distribution
where χ → 1 (inner chamber’s wall region) showed that the varies spatially and
temporally correction is O(εt). This result is consistent with the analytical result we
obtained in the next section.
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Viscous flow fields in hyperelastic chambers

0

(a) (b)

128
v (mm s–1)

37.565 39.551
p (KPa)

Figure 5. Series solution of single inlet chamber (case I): (a) velocity field and streamlines, where the colours
describe the magnitude of the flow velocity, and the white dotted lines are the streamlines; (b) pressure
distribution with white dash–dotted contour lines of constant pressure. The chamber’s radius is 6 mm and
the volumetric flux is q = 200 mm3 s−1.

5.2.2. Additional dynamic cases
Figure 5 presents the series solution of the flow velocity magnitude with streamlines and
the pressure distribution, based on (4.27)–(5.5), and utilizing the parameters in table 1. The
expected characteristic pressure is p∗ = O(1 kPa), the characteristic flow velocity within
the chamber is v∗ = O(1 mm s−1) and Re ≈ 0.01. The results are based on summation
of 100 terms in the series solution in (5.5). A remarkable and non-intuitive result was
obtained from the pressure solution on the chamber’s wall (see figure 4c). The maximum
pressure obtained on the elastic wall is not obtained near the inlet tube. This result may be
critical in identifying the failure point of the chamber’s wall.

The theoretical solution also readily allows analysing chambers with two inlets, both
with controlled volumetric flow rates. In the first case, whose typical flow velocity
magnitude and pressure distributions are presented in figure 6, the chamber is inflated by
equal flow rates from both inlets, whereas in the second case, whose behaviour is presented
in figure 7, the flow rate in one of the inlets is reversed, meaning that the chamber is inflated
and deflated simultaneously. In the first case, each streamline is directed to the chamber’s
wall; thus, the inflation rate is maximal. In the second case, even though the rate of the inlet
and outlet are equal, and thus the volume are constant, a pressure distribution is developed
that varies in space and not in time.

5.3. Case II – dictated inlet pressure and hyperelastic wall model
In this case, we dictate only the inlet pressure, and solve for the fluidic pressure
distribution, as well as the chamber’s stretch, λ(T).

We use integral mass conservation (4.22) in order to calculate the pressure at the location
in which the tube connects with the chamber,

PC(T) ≈ Pin(T)− 32λ2 dλ
dT
. (5.8)

Similarly to the previous case, we substitute (R, θ) = (λ,π) in the pressure distribution
solution (4.28) and equate it to PC(T) in order to solve for the function P0(T). The pressure
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0 128
v (mm s–1)

37.566 39.552
p (KPa)

(a) (b)

Figure 6. Series solution of a double inlet chamber (case I): (a) velocity field magnitude (colourmap) and
streamlines (white dotted curves); (b) pressure distribution. The chamber’s radius is 6 mm and the volumetric
flux is q = 200 mm3 s−1 in both inlets. In this case, each streamline is directed to the chamber’s wall.

0 128
v (mm s–1)

35.173 39.340
p (KPa)

(a) (b)

Figure 7. Series solution of a chamber with inlet and outlet (case I): (a) velocity field magnitude (colourmap)
and streamlines (white dotted curves); (b) pressure distribution. The chamber’s radius is 6 mm and the
volumetric flux is q = 200 mm3 s−1 in both inlet and outlet. Since the flow rate of the inlet and outlet are
equal, a steady-state solution is obtained for the flow and pressure fields. After an initial transient, the flow and
pressure fields reach a steady state.

distribution obtained by these means is

P(II)(R, θ; T) = Pin(T)− 32λ2 dλ
dT

+ 4ε
λε̃4

dλ
dT

∞
∑

n=1

(2n + 3)
(

(n + 1)Λ̃(in)n + ϕ̃
(in)
n+1

)

n

[

(−1)n − χnPn(cos θ)
]

. (5.9)
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Viscous flow fields in hyperelastic chambers

Finally, using the mechanical energy principle (5.4), we derive a nonlinear ordinary
differential equation governing the time-dependent stretch of the chamber,

[

32λ2 − 2ε
λε̃4Υ (ε̃)

]

dλ
dT

= Pin(T)− 1
λ2

dψ̂
dλ
, (5.10)

where

Υ (ε̃) :=
∞
∑

n=1

(2n + 3)
(

(n + 1)Λ̃(in)n + ϕ̃
(in)
n+1

)

n
[2(−1)n + P

(in)
n ] = O(ε̃). (5.11)

The function Υ (ε̃) was estimated numerically by summing the first 105 terms in the
series for several values of ε̃ corresponding to ε̃ ∈ [0.002, 0.5].

By substituting the asymptotic approximation of Υ , into the differential equation that
governs the chamber’s stretch (5.10), we obtain its approximated explicit form given by

dλ
dT

= 1
32λ2

[

Pin(T)− 1
λ2

dψ̂
dλ

]

+ O(εt). (5.12)

Next, we investigate the system’s behaviour in (5.12), whose motion is governed by a
controlled pressure inlet. In order to validate this model, we have compared its solution
obtained utilizing the parameters in table 1 to finite element simulations carried out in
COMSOL Multiphysics. The numerical scheme used here is similar to the one utilized in
the previous section, but with the imposed flow rate replaced with an imposed piecewise
constant pressure. Figure 8 compares the stretch of the chamber in time, as achieved
theoretically from the asymptotic equation (5.12) and numerically from the simulation.
Since the chamber is not restricted to be spherical in the numerical simulations, the stretch
is taken to be its effective value given in Ilssar & Gat (2020) as ηeff (t) = √

AS(t)/4π. Here,
AS(t) is the body’s surface area obtained in the non-spherical simulations, and ηeff (t) is
the effective radius of an ideal sphere having the same surface area as the non-spherical
body. This figure shows an excellent agreement.

In order to approximate the characteristic time constant of the system, enabling us to
estimate the time it takes to reach a steady-state, we formulate a linear approximation. The
linear system describing the system’s dynamic response, close to an equilibrium point
given by (λSS,PSS), when the pressure at the inlet is dictated to be Pext(τ ). The linear
equation is solved analytically, leading to the following solution:

λL(τ ) = λSS +
(

λ(0)− λSS + 1
4λ2

SS

∫ τ

0
eβIτ

′
�Pin(τ

′) dτ ′
)

e−βIτ , (5.13)

where �λL = λL(τ )− λSS is a small stretch variation around its nominal value λL,
�Pin(τ ) = Pin(τ )− PSS is the pressure variation from its nominal value, and

βI = 1
4λ2

SS

dPSS

dλSS
= PSS

2λ3
SS

− 3
λ4

SS
+ 9
λ10

SS
− α

(

1
λ2

SS
− 7
λ8

SS

)

. (5.14)

From (5.14), it is clear that the solution branches of PSS in (3.3) are stable equilibria
if and only if dPSS/dλSS > 0. The stability criterion obtained from the equation’s
linearization is identical to the stability criterion obtained from energetic considerations
in (3.4). Moreover, from the linear solution, the relaxation time can be approximated
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CFD simulation
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Inlet pressure

Figure 8. A numerical verification of the fully coupled model describing a chamber’s dynamic responses to
a pressure pulse imposed at a single inlet, as shown in the red line. The continuous blue curve represents the
solution obtained in the numerical CFD simulation, and the dashed black line represents the solution obtained
by the (5.12), developed in our analysis. An excellent match between the results can be observed.

as Trelax = 32/βI . Since the derivative dPSS/dλSS in the first branch (I) of the typical
pressure-stretch curve, which is plotted in figure 2, is significantly higher than in the third
branch (III), the dynamic response in the third region is much slower.

In order to achieve a better approximation, (5.12) is approximated by a quadratic Taylor
expansion around the general equilibrium point. When the pressure at the inlet equals
the steady-state pressure, �Pin(τ ) = 0, the solution of this equation under a small initial
perturbation from equilibrium λQ(T) is given by

λQ(τ ) = λSS + βI

−βII +
(

βII + βI

λ(0)− λSS

)

eβIτ

, (5.15)

where

βII = −3PSS

4λ4
SS

+ 6
λ5

SS
− 45
λ11

SS
+ α

(

1
λ3

SS
− 28

λ9
SS

)

. (5.16)

In figure 9, the linear and the second-order approximations were displayed alongside the
exact numerical solution of (5.12). The excellent agreement between the exact dynamic
response and both approximations indicates that these two approximations are suitable for
the prediction of the chamber’s evolution.

In § 3, we have shown that in the pressure range spanning between PA and PB, there are
three possible equilibrium radii for each constant pressure value. Multiple solutions can
be exploited to switch from one equilibrium state to another under the same steady-state
pressure while passing through the unstable, middle branch. An example of such a
transition is shown in figure 9, where after increasing the input pressure and decreasing it
back to its initial value, the chamber’s radius does not return to its initial radius. Instead, it
retains a larger radius, corresponding to the higher equilibrium state. Initially, the system
converges to the equilibrium point λI

SS corresponding to PSS, in the first branch (I) which
is closer to the initial conditions; then, the inlet pressure rises to a value higher than PA
to move the chamber to another equilibrium point in the third branch (III). Finally, we
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Figure 9. Analytical Solutions: (a) the evolution of the chamber’s stretch (solid blue curve), alongside its linear
approximation (5.13) (dash–dotted green curve) and quadratic approximation (5.15) (dashed yellow curve),
where the input pressure (dashed red curve) varies between its extremum values PA and PB. (b) The equilibrium
pressure-stretch curve (solid blue curve), alongside the lower (dashed red line) and higher (dashed green line)
pressure values, corresponding to PA and PB. The red dashed line shows the entry pressure value in the first and
last stage (PSS = 2.75) and the green dashed line shows the pressure dictated in the middle stage (PSS = 3.05).
The equilibrium points corresponding to the PSS = 2.75 pressure are marked with red marks where λ(I)SS = 1.25
and λ(III)SS = 4.79.

decrease the pressure again to the same level as the initial step, PSS, so that the system
will converge to the second equilibrium point in the third branch (III). These results are
consistent with the insights raised in our previous work (Ben-Haim et al. 2020). It is worth
emphasizing at the end of this section that the general solutions obtained in relations
(4.27), (5.5) and (5.9), are parametrically dependent on the dictated strain energy density
function ψ(λ), based on the chosen constitutive law. Here, we have chosen to present the
results using the Mooney–Rivlin hyperelastic constitutive law to illustrate the phenomenon
of bistability and to compare our results with some other works which have assumed
uniform pressure. However, any other constitutive law for the elastic shell can be used
in order to derive the solution for the pressure distribution and velocity field in the three
cases illustrated in the section.

6. The dynamic behaviour of two interconnected bistable chambers

In this section, we analyse the behaviour of a system consisting of two chambers,
serially connected through slender tubes to a single inlet, whose flow rate is dictated
and equal to Qin(T) ≡ Q(T). This system is instrumental for understanding the behaviour
of interconnected bistable elements, and it sheds light on the capability to govern the
constituent elements by employing a single input (Ben-Haim et al. 2020). In many works
in which flow-controlled bistable elastic systems have been examined, the main assumption
is uniform pressure within the elastic element (Treloar 1975; Dreyer et al. 1982; Glozman
et al. 2010; Ben-Haim et al. 2020). Here, we shall analyse the dynamics of such systems
using the solution we developed in the previous sections, which considers the pressure
distribution in the elastic element’s inner space. This system’s physics is described
utilizing the analyses presented above, where we study identical tubes and chambers. The
system under investigation combines two of the cases analysed in the previous section, as
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the flow from the inlet to the first chamber is dictated. We denote the stretch of the first and
the second chambers as λ1(T), λ2(T), respectively. From the integral mass rate balance,

Q(T) = 4λ2
1

dλ1

dT
+ 4λ2

2
dλ2

dT
. (6.1)

The stretch λ2(T) of the second chamber is governed by (5.12), where Pin(T) is related
to the pressure in the point in the tube relative to the connection with the (second) chamber.
In our case P(eff )

in (T) = P(λ1, 0; T) is the effective external pressure, where P(R, θ; T) is
given by (5.5). Recalling that the Fourier coefficients Λn and ϕn are linear combinations
of the inlet the outlet flow rates (4.26), the effective external pressure is rewritten as

P(eff )
in (T) = 1

λ2
1

dψ̂
dλ

∣

∣

∣

∣

∣

λ1

+ ε

λ3
1ε̃

4
1

(

4λ2
2

dλ2

dT
Π(out)(ε̃1)+ Q(T)Π(in)(ε̃1)

)

, (6.2)

where

Π(·)(ε̃1) :=
∞
∑

n=1

(2n + 3)
(

(n + 1)Λ̃(·)n + ϕ̃
(·)
n+1

)

n

[

−1
2

(

P
(in)
n + P

(out)
n

)

− 1
]

(6.3)

and ε̃1(T) = ε/λ1(T). Utilizing the results achieved for the different values of ε̃1 yields
the following approximations: Π(out)(ε̃1) = O(ε̃1) and Π(in)(ε̃1) = O(ε̃2

1). Using the
governing equation of λ2(T) in (5.12) yields the second equation of motion,

dλ2

dT
= 1

32λ2
2

(

1
λ2

1

dψ̂
dλ

∣

∣

∣

∣

∣

λ1

− 1
λ2

2

dψ̂
dλ

∣

∣

∣

∣

∣

λ2

⎞

⎠+ O(εt). (6.4)

Equations (6.1) and (6.4) are a set of nonlinear coupled first-order differential equations
that govern the evolution of the chamber’s stretches λi(T) under the single input Q(T). In
our previous work (Ben-Haim et al. 2020), we have presented an algorithm whose purpose
is to bring the system from one equilibrium state to another by a single input. There, it is
assumed that the process is quasi-static; thus, the chamber’s pressure is uniform during the
process. Thanks to the analysis presented in this work, it is possible to consider the pressure
distribution and the chambers’ flow field during the dynamic process. The equilibrium
state of this system is achieved when the flow rate is zero. In this case, the derivatives
in time are equal to zero, and the differential equations degenerate into a single algebraic
equation that defines the equilibrium curves. The equilibrium curves are defined by

(

1
λ2

1

dψ̂
dλ

)∣

∣

∣

∣

∣

λ1,SS

=
(

1
λ2

2

dψ̂
dλ

)∣

∣

∣

∣

∣

λ2,SS

. (6.5)

Equation (6.5) describes the equilibrium curves of the system presented in figure 10(a).
Importantly, this nonlinear equation gives rise to two solutions. One solution is given by
λ1,SS = λ2,SS, where the radii of both chambers are equal, whereas in the second one
the radii are different, λ1,SS /= λ2,SS, thanks to the bistability of the chambers. When the
system is initially placed out of equilibrium (by setting zero input, or response to initial
condition), the solution moves along the curve of constant total volume, λ3

1 + λ3
2 = const.,

and converges toward stable equilibrium branches. In our previous work (Ben-Haim et al.
2020), we have presented an algorithm whose purpose is to bring the system from one
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Figure 10. (a) Equilibrium curves of the two-chamber system in the {λ1; λ2} plane. Black solid curves are
stable branches and black dashed curves are unstable ones for α = 0.1. The evolution of the equilibrium curves
by the α parameter is described by the grey curves. The blue line is the solution trajectories of numerical
simulations of (6.1) and (6.4), overlaid on the branches of equilibrium curves. The red and green points describe
the moments in which the flux is changed. (b) Time plots of chambers’ stretch λi(T) obtained by numerical
integration of the nonlinear dynamical system. (c) Time plot of inlet flow Q for inflation and deflation in the
case of two chambers.

equilibrium state to another using a single input. It assumed that the process is quasi-static;
thus, the chamber’s pressure is hydrostatic during the process. Thanks to the analysis
presented in this work, it is possible to consider the pressure profile and the chambers’
flow field during the dynamic process. In figure 10, we used our algorithm and presented
a scenario where the system undergoes an irreversible sequence of transitions between
the chambers’ combined states while being controlled by a single input of flow rate
Q(T). The chosen input is piecewise constant, represented in figure 10(c). Figure 10(b)
shows the system’s trajectory in the {λ2, λ2} plane, overlaid on the equilibrium curves.
The plots show how the system goes through the irreversible sequence of states. These
state transitions are made possible by exploiting the following critical effect. When the
state trajectory follows a stable branch and reaches a point where it becomes unstable,
the trajectory rapidly ‘jumps’ and converges to a stable branch, moving very close to
a cubic arc of constant total volume. Figure 11 shows the flow velocity and pressure
distribution corresponding to an attractive instance in which the system passes through
point A, presented in time and on the {λ2, λ1} plane, in figure 10. When the system reaches
point A, the flow rate from the first chamber (the one connected to the inlet tube) towards
the second chamber is spontaneously bigger than the inlet flow rate. Therefore, the first
chamber is deflated.

7. Concluding remarks

In this work, we analysed the dynamics of creeping flow in a bistable hyperelastic spherical
chamber by calculating the velocity field and pressure distribution inside the chamber. The
analytical results were compared with numerical simulations, which showed an excellent
fit. From the normalization of the governing equations (4.1) and (4.2), we obtained the
condition ε = a4/r3

0� � 1 which led to creeping flow inside the chambers. Moreover, we
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0

(a) (b)

364

v (mm s–1)
38.39 44.52

p (KPa)

Figure 11. Series solution of a system consisting of two chambers controlled by single inlet: (a) velocity field
and streamlines; (b) pressure distribution. The flow velocity and pressure distribution corresponding to when
the system passes through the point A shown in figure 10.

obtained the condition q∗ � μa/ρ for inertial effects to be negligible in the vicinity of the
connection to the tubes.

In order to describe the coupled model of viscous–elastic dynamics, we first focused
on the nonlinear constitutive elastic laws (the Mooney–Rivlin model). Next, using
the analytical series solution, we studied the dynamic responses for two physical
different cases. The first case was dictated volumetric flux. Based on the mechanical
energy principle, we formulated the chamber’s pressure distribution. We obtained the
characteristic pressure in the elastic chambers as p∗ = w0ψ

∗/r0 which depends on the
hyperelastic model we used.

The pressure is spatially uniform at the leading order. Mainly, the leading order of the
problem is a case of fully developed uniform pressure without any velocities. More spatial
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and temporal pressure and velocities are created in the dynamic case where the chamber is
inflated or deflated. Based on the numeric simulation, we saw that close to the chamber’s
wall (χ → 1), the viscous flow will generate O(εt) spatially varying corrections. In this
analysis, we obtained a non-intuitive result – the pressure solution on the chamber’s wall
obtained its maximum value at an intermediate value of θ away from the poles θ = 0 and
θ = π. This qualification may be critical in identifying the failure point of the chamber’s
wall.

In the second physical case, the flow was driven by an imposed inlet pressure. There
we have simplified and reduced the time-varying dynamical equations to one compact
equation depending on the elastic model, dictated pressure, chamber stretch and inlet
tube slenderness (5.12). Although the finite element simulation showed that the chamber
undergoes a slightly different deformation from an ideal sphere (making it slightly
pear-shaped), the effect is small and the solution obtained in this work are an excellent
approximation. However, in order to characterize the obtained geometric shape, more
extensive analysis is required, which goes beyond the scope of this work.

In the last part of this work, we presented an investigation of a system consisting
of two interconnected coupled chambers controlled by the flow at the chamber’s inlet.
This system demonstrates the bistability feature through which the chambers can display
controlled transitions between different multistable states using a single input of controlled
flow rate.

We have developed an analytical model that can serve as the basis for the physical
understanding of acinar fluid mechanics in a rhythmically expanding spherical alveolus
and its vicinity. These results allow the modelling of flows in applications such as the
inflation of balloons in medical procedures and pulmonary drug delivery optimization
to target specific lung regions. Moreover, the results might be leveraged to analyse the
dynamics of particles inside spherical elastic chambers in low Reynolds flow as future
work.
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Appendix A. Asymptotic approximations for the equilibrium equation PSS(λSS)

In § 3 the relation between stretch, λSS, and pressure, PSS, in equilibrium condition
has been presented. This well known relation was extensively leveraged to describe the
quasi-static inflation of spherical balloons (Treloar 1975; Beatty 1987; Ben-Haim et al.
2020) for spatially uniform pressures. As seen from figure 2(a), showing the relation in
(3.3) with α = 0.1, the uniform pressure of the chamber, PSS(λSS) has two bifurcation
points, described by a local maximum point at (λA,PA) and a local minimum point at
(λB,PB). This figure shows a bifurcation, which occurs when the pressure enters or exits
the range between the local extrema, PA < PSS < PB, illustrated in grey. Here, we shall
obtain asymptotic approximations for the bifurcation points of the equilibrium curve,
PA,PB, λA and λB. Since the static behaviour of the system is dependent on the value
of the uniform pressure, the bifurcation points (λA,PA) and (λB,PB) may be computed.
These extrema are the roots of the derivative of the system energy, given by the roots of
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the quartic polynomial equation,

x3 − 7 = α(x4 + 5x), (A1)

where x = λ2
SS. Since α � 1 we use the iterative asymptotics, yielding

xi+1 = 3
√

7 + α(x4
i + 5xi). (A2)

Starting with x0 = 3√7 which is obtained from the leading-order solution (α = 0), after
two iterative steps, the approximation is obtained as

λA = √
x2 = 6√7 + 2√

7
α + 12

7 6√7
α2 + O(α3). (A3)

Substitution of (A3) into (3.3) and then using the Taylor series approximation, yields
the regular approximation for the local maximum point as

PA = 24

7 6√7
+ 24

6√75
α + 48

7
√

7
α2 + O(α3). (A4)

In order to approximate the local minimum point, we use another singular asymptotic
method. We consider y = αx and rewrite (A1) as

y4 − y3 + α3(5y + 7) = 0. (A5)

Since the new equation is regular, we approximate the minimum point by asymptotic
expansion with regard to the small parameter α,

y(α) = 1 + αy1 + α2y2 + α3y3 + O(α4). (A6)

This expansion is formally substituted into the algebraic equation (A5), and the
coefficients of the powers of α are compared. Then, the approximation of λB and PB are
obtained, as follows:

λB = 1√
α

+ 6α3√α + O(α6),

PB = 8
√
α − 8

√

α7 + O(
√

α15).

⎫

⎪

⎬

⎪

⎭

(A7)

The evolution of those extrema as a function of the small parameter α is presented
in figure 2(d). This figure shows a further bifurcation, implying that a region with three
equilibria exists only when 0 < α < 0.214. Those parameters are considered to lie within
the physical domain of rubber-like materials, as well as for biological tissues.

The next curve we examine is the solution of the equilibrium equation (3.3). Since
the equation has no analytical solution, we shall find an asymptotic approximation by
separating the solution into three main regions, as shown in figure 2(c). In the first region,
(I), the pressure in the chamber is lower than the maximum point, 0 < PSS < PA and
1 < λSS < λA. In the second region, (II), the pressure in the chamber is between the
minimum and maximum points of the graph, PB < PSS < PA and λA < λSS < λB. In the
third region, (III), the pressure in the chamber is higher than the minimum point on the
graph, PSS > PB and λB < λSS.
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In the first case (where P < PA), the equilibrium point will be close to λSS = 1. Ilssar
& Gat (2020) present the following approximation to describe this branch by λSS = 1 +
δ1 + δ2

1 + O(δ3
1), where δ1 is formulated by

δ1(PSS;α) =
−7PSS + 24 + 24α −

√

3
[

64αPSS + 192(α + 1)2 − 21P2
SS
]

8(7PSS − 33α − 21)
. (A8)

Next, the second stable equilibrium radius, which exists when the pressure is higher than
the local minimum (P > PB), is considered significantly larger than unity. Thus, in order to
formulate an approximation for this equilibrium stretch, λSS = δ−1

2 (α) � 1 is substituted
into (3.3). After some regular algebraic manipulation, a second-order algebraic equation
in terms of λSS is provided. The solution is given by

δ2(PSS;α) =
PSS ±

√

P2
SS − 64α

8
. (A9)

The solution having a positive sign in front of the square root of the discriminant, is
suitable for the solution of the third case in which PSS > PB, while the solution with the
negative sign is suitable for solution of the unstable branch in which PB < PSS < PA.
Those approximations are also plotted in figure 2(c) with dashed lines on the solid curve
representing the exact solution.

Appendix B. Asymptotic justification for neglecting the non-spherical deformation
of the chamber

For the case of a narrow tube filling a larger chamber, the pressure within the chamber
involves a large spatially uniform part and a small-order correction, εP1(R, θ; ε̃; T). This
result was obtained analytically by (4.12) without restricting to spherical deformation.
Assuming that the chamber’s radius is large relative to the tube’s radius (εa � 1), and
based on the coupled model of fluid–solid numerical simulation results (see figure 4), it
is clear that the maximum pressure gradient is obtained in the inlet (or outlet) region and
significantly decays within the chamber’s area. Since far away from the tube (χ → 1) the
pressure is approximately hydrostatic, the real shape of the chamber will consist of an
ideal sphere in addition to a small perturbation. Based on the numerical results we have
obtained in § 5.2, the perturbation of the chamber’s stretch is O(εt), so we shall assume a
regular asymptotic approximation as follows:

λ(θ; T) = λ0(T)+ εtλ1(θ; T)+ O(ε2
t ). (B1)

As we have already seen in § 4, the pressure is spatially uniform at the leading order.
Mainly, the leading order of the problem is a case of fully developed uniform pressure
without any velocities. According to the solution obtained by Beatty (1987), PS(λ0) =
λ−2

0 × dψ/dλ0 is the well known isotropic pressure which represents the hydrostatic
pressure in the leading order. On the other hand, from the CFD simulation, we saw that
close to the chamber’s wall (χ → 1), the viscous flow will generate O(εt) spatially varying
corrections. Therefore, it is convenient to assume that pressure distribution can also be
approximated as

P(R, θ; T) ≈ PS(λ0)+ εtP̃(R, θ; T), at χ → 1, (B2)

where P̃ ∼ O(1) and εtP̃ ∼ εP1 close to the inner chamber’s wall. In order to examine the
effect of non-spherical deformation on the resulting pressure profile (without considering
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nonlinear hyperelastic analysis that is outside the scope of this work), we wish to use the
regular asymptotic approximation (B2) and set the radial perturbation (B1),

P(R = λ(θ; T), θ; T) ≈ PS(λ0)+ εtP̃(R = λ(θ; T), θ; T), at χ → 1, (B3)

by taking a Taylor expansion, this can be approximated as

P(R = λ(θ; T), θ; T) = PS + εtP̃ + O(ε2
t ) ∼ PS + εP1. (B4)

Hence, the O(εt) term in the chamber’s shape creates an O(ε2
t ) pressure correction. In

order to find the full fluid–structure interaction, the entire elastic equations must be solved
coupled with the Stokes equation; but this analysis is extensive, and thus lies beyond the
scope of the present work.
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