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Abstract
We present a theoretical model and experimental demonstration of thin liquid film deformations due to a dielectric
force distribution established by surface electrodes. We model the spatial electric field produced by a pair of parallel
electrodes and use it to evaluate the stress on the liquid–air interface through Maxwell stresses. By coupling this
force with the Young–Laplace equation, we obtain the deformation of the interface. To validate our theory, we design
an experimental set-up which uses microfabricated electrodes to achieve spatial dielectrophoretic actuation of a thin
liquid film, while providing measurements of microscale deformations through digital holographic microscopy. We
characterize the deformation as a function of the electrode-pair geometry and film thickness, showing very good
agreement with the model. Based on the insights from the characterization of the system, we pattern conductive lines
of electrode pairs on the surface of a microfluidic chamber and demonstrate the ability to produce complex two-
dimensional deformations. The films can remain in liquid form and be dynamically modulated between different
configurations or polymerized to create solid structures with high surface quality.

Impact Statement
Optical elements such as microscopy phase masks, holography plates, and aberration compensation plates
require well defined surface topographies with a high surface quality. Smooth topographies are also desired
in a variety of biological applications such as anti-fouling and control of cell proliferation. Fabrication of
smooth curved surfaces, particularly at the microscale, is a challenge for most fabrication techniques such as
lithography, machining and three-dimensional printing.
In this work, we leverage dielectrophoresis, commonly used to manipulate micro-scale particles within liquids,
to create nearly arbitrary deformations of a thin liquid film by applying a force distribution on its gas–liquid
interface. Our results provide a practical methodology for the design of such systems, allowing to control
the deformation shape and magnitude. Using photopolymers, the technique enables the fabrication of solid
micro-scale objects with smooth (nanometer roughness) topographies.
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1. Introduction

Dielectrophoresis (DEP) is a particular case of a force arising from the Maxwell stresses acting on
dielectric materials containing permittivity gradients. The effect of DEP on particles has been studied
extensively for over seven decades (Hughes, 2000; Jones, 1995; Pohl, 1978). Significant advancement in
microfabrication techniques in the early 1990s led to wider adoption of DEP, particularly in biological
applications, as a method for control and manipulation of cells, viruses, proteins and DNA (Chiou,
Ohta, & Wu, 2005; Eberle et al., 2018; Hughes, 2000; Zhang et al., 2018).

To date, only a few studies have examined the effect of DEP forces in geometries which are not
particles, bubbles or droplets immersed in a liquid. Pellat (1894) was the first to study the effect of DEP
on the rise of a dielectric liquid contained between two parallel electrodes. Extending Pellat’s study,
Jones (2002), Jones, Fowler, Chang, and Kim (2003) and Jones, Wang, and Yao (2004) investigated the
influence of the liquid properties and the electric field frequency on the final height of the rising liquid,
and used the term ‘liquid DEP’ (credited to Melcher (Jones, 2002)) to describe problems associated
with the motion of a liquid–air interface. Jones, Gunji, Washizu, and Feldman (2001) also studied the
use of DEP forces for the generation and control of micro- and nano-droplets on solid surfaces.

The DEP actuation can also be leveraged for shaping the interface of a dielectric liquid film, as first
demonstrated by Brown, Wells, Newton, and McHale (2009), Brown, Al-Shabib, Wells, McHale, and
Newton (2010), Brown, McHale, and Mottram (2011) and Wells, Sampara, Kriezis, Fyson, and Brown
(2011). In their original work, Brown et al. demonstrated the ability to deform a thin liquid film using
DEP forces produced by an array of interdigitated electrodes. Using an electrode spacing of between 20
and 240 µm, they formed a fluidic diffraction grating with corresponding peak-to-peak spacings (Brown
et al., 2009). In follow-up work, they provided a detailed experimental study of the deformation scaling
with the electric field magnitude, electrode spacing and film thickness (Brown et al., 2010). Under the
assumption of a periodic structure, and using a minimum energy approach, Brown et al. also provided
an explicit analytical expression for the deformation (Brown et al., 2011). Wells et al. then showed that
such structures could also be polymerized to yield solid optical components that no longer require the
electric field to maintain their shape (Wells et al., 2011). Their demonstration naturally raises the desire
to create other, more complex, surface deformations. However, such generic deformations cannot be
addressed by a periodic energy-balance approach.

In this work, we provide an alternative approach for the analysis for thin film deformations by DEP
forces that does not rely on the assumption of a periodic structures. Instead of the energy approach,
we utilize a force balance approach and model the spatial electric field created by pairs of electrodes
patterned at the bottom of the fluidic chamber and calculate numerically the force distribution on the
interface through Maxwell stresses. Coupling the DEP force with the Young–Laplace equation, we
derive the governing equation describing the deformation of the interface. To validate the theory, we
design an experimental set-up which allows spatial dielectrophoretic actuation, measurements of the
microscale deformations and rapid curing of the deformed film into a solid object. Based on the insights
from the characterization of the system, we demonstrate the ability to produce complex two-dimensional
structures and provide guidelines for the design of such systems.

2. Concept and physical mechanism

Figure 1 presents the concept of thin liquid deformation using dielectrophoretic forces. The system we
consider consists of a fluidic chamber filled with a thin layer of dielectric liquid resting on top of a rigid
substrate containing patterned electrodes. Aiming to achieve localized deformations, we use pairs of
closely spaced electrode lines to define arbitrary paths along the chamber, as illustrated in figure 1(a).
Upon setting an alternating current (AC) electric potential difference between the electrodes, a strong
localized electric field is created. Figure 1(b) presents the electric field lines at the high frequency regime
where the liquid acts like a perfect dielectric (Castellanos, Ramos, González, Green, & Morgan, 2003;
Morgan & Green, 2003). This electric field creates localized Maxwell stresses at the liquid–air interface
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Figure 1. Illustration of the concept of DEP-induced deformations. (a) Isometric view of the device
used for inducing deformation, which consists of an open microfluidic chamber whose floor is patterned
with pairs of electrodes leading to interface pads. The chamber is filled with a thin dielectric liquid
film, forming a liquid–air interface. (b) A cut view of the chamber showing that upon actuation of the
electrodes, a non-uniform electric field is established (potential map indicated in grey scale, electric
field lines in blue). (c) The electric field induces Maxwell stresses on the interface with maxima in
proximity to the electrode pairs. (d) The stresses deform the liquid–air interface, with the deformation
extending far beyond the electrodes region. While the DEP force is non-negative everywhere, mass
conservation dictates both positive and negative deformation. The green dashed lines in d indicate the
corresponding region shown in b and c. (e) Image of a rectangular microfluidic chamber filled with
silicone oil and patterned with the same electrode configuration presented in a, where actuation of the
electrodes enables to reshape the interface creating complex and localized patterns such as writing the
word ‘DEP’.

(figure 1c), which in turn act to deform the interface (figure 1d). The permittivity difference in our
system creates purely positive forces that push the interface upward; however, due to mass conservation,
both positive and negative deformations are obtained. Figure 1(e) presents the deformation of a thin
layer of silicone oil by DEP forces induced by an electrode pattern in the form of the word ‘DEP’.

3. Results

3.1. Theoretical model

Consider a liquid resting on top of a rigid substrate patterned with conductive electrodes and open to
the air from the top, as illustrated in figure 1(a) with a Cartesian coordinate system at the bottom where
the x–y plane is parallel to the floor and the z coordinate pointing at the normal direction to the floor.
The electric body force at any point in the system can be expressed as (Melcher 1981)

f = 𝜌EE − 1
2

E2∇𝜀 + 1
2
∇
(
𝜌
𝜕𝜀

𝜕𝜌
E2

)
, (3.1)

where 𝜌E is the free charge density, E is the electric field, 𝜀 is the dielectric permittivity and 𝜌 is
the fluid’s density. Under the assumptions of a high frequency regime, i.e. 𝜔 � 𝜎/𝜀 (where 𝜔 is the
electric field frequency and 𝜎 is the fluid’s conductivity), the liquid can be assumed to behave as a
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perfect dielectric, and the contribution of the free charges (first term in (3.1)) vanishes (Castellanos
et al., 2003; Ramos, Morgan, Green, & Castellanos, 1998). Furthermore, if the liquid is assumed to
have uniform permittivity, then the second term vanishes everywhere except at the interface where a
discontinuity in permittivity exists. A convenient way to express the force distribution on the liquid–air
interface is by considering the Maxwell stresses tensor, Tĳ (Melcher, 1981) associated with (3.1),

Tĳ = 𝜀

(
EiEj − 1

2
𝛿ĳEkEk

(
1 − 𝜌

𝜀

𝜕𝜀

𝜕𝜌

))
, (3.2)

(where 𝛿ĳ is the Kronecker delta) and evaluating its normal projection on either side of this interface
(see detailed derivation in supplementary material section S1 available at https://doi.org/10.1017/flo.
2021.13) provides the electrostatic force on the interface.

For convenience, we decompose the normal component of the electrostatic force on the interface into
two terms representing the contribution of the permittivity discontinuity, fDEP, and of the electrostriction,
fES:

fDEP =
1
2
(𝜀f |Ea,t |2 + 𝜀aE2

a,n)
(
1 − 𝜀a

𝜀f

)
, (3.3)

fES =
1
2

[
|Ea |2𝜌a

(
𝜕𝜀

𝜕𝜌

)
a
− |Ef |2𝜌f

(
𝜕𝜀

𝜕𝜌

)
f

]
, (3.4)

where Ea,n and Ea,t are the normal and tangential electric field components at the air side of the interface,
respectively. The subscripts a and f mark the air and the fluid domains. We note that both the normal and
tangential components of the electric field contribute to the force distribution in the normal direction to
the interface.

To calculate the shape of the liquid–air interface at steady state, we express the normal stress balance
while accounting for surface tension and Maxwell stresses,

Pf − Pa + fDEP + fES = 𝛾𝜅, (3.5)

where 𝛾 and 𝜅 are the surface tension and the mean curvature of the liquid–air interface, Pa is the
pressure in the air (which can be assumed constant) and Pf is the fluid pressure distribution on the
interface. To resolve the pressure everywhere in the liquid, we write the electrohydrostatic equation,
∇p = f − 𝜌f g (Stratton, 1941), which after integration yields

pf (x, y, z) = P0 + 𝜌f

(
1
2

(
𝜕𝜀

𝜕𝜌

)
f
|E(x, y, z) |2 − gz

)
, (3.6)

where g is the gravitational acceleration, pf (x, y, z) is the pressure in the liquid and P0 is a constant that
can be determined from the boundary conditions (e.g. far from the electrodes, at the liquid–air interface,
pf is equal to the atmospheric pressure). By substituting (3.4) and (3.6) into (3.5) we obtain

P0 + 𝜌f

(
1
2

(
𝜕𝜀

𝜕𝜌

)
f
|E|2f − gh

)
− Pa + fDEP + 1

2

[
|Ea |2𝜌a

(
𝜕𝜀

𝜕𝜌

)
a
− |Ef |2𝜌f

(
𝜕𝜀

𝜕𝜌

)
f

]
= 𝛾𝜅, (3.7)

where h is the height of the liquid film. Importantly, the contribution of the electrostriction pressure
in the fluid cancels out with the fluid’s contribution to the electrostriction force distribution on the
interface. Furthermore, using the Clausius–Mossotti law (Stratton, 1941),

𝜌
𝜕𝜀

𝜕𝜌
=

(𝜀 − 𝜀0)(𝜀 + 2𝜀0)
3𝜀0

, (3.8)
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Figure 2. Two-dimensional illustration of the parallel electrode-pair configuration and the relevant
physical parameters used in modelling the system. (a) A dielectric liquid of volume Vf is placed in a
chamber of length l and height h0, forming a thin film wetting the chamber’s floor and walls. Two surface
electrodes of width and gap le, are located at the centre of the chamber. The dielectric permittivities of
the fluid and air above it are 𝜀f and 𝜀a, respectively, and the surface tension of the fluid–air interface
is 𝛾. (b) A closer view on the electrode region. Since the dimensions of the electrodes are significantly
smaller than the size of the chamber, we assume an approximately constant height for the liquid film for
the purpose of electric field and force calculations.

the electrostriction pressure in the air vanishes (𝜀a = 𝜀0). The final equation governing the shape of the
interface is thus

fDEP − 𝛾𝜅 − 𝜌gh = Pa − P0. (3.9)

3.1.1. Two-dimensional model
While the system we consider in our experimental work is three-dimensional, significant insight into
the DEP forces and the deformations of the liquid–air interface can be obtained through analysis of a
two-dimensional system. Consider a two-dimensional fluidic chamber of length l and height h0 filled
with a dielectric liquid of volume Vf (per unit depth) creating a thin liquid film, as illustrated in figure 2.
The floor of the chamber contains at its centre a pair of electrodes of width and gap le and negligible
thickness. The dielectric permittivities of the liquid and the air above it are 𝜀f and 𝜀a, respectively, and
the surface tension of the liquid–air interface is 𝛾.

The electric field and the deformation in the system are coupled. However, because the electric field
decays rapidly away from the electrodes, we consider a simplified model in which the film thickness
is uniform and equal to its value at the centre between the electrodes, as illustrated in figure 2(b). This
approximation holds well for small deformations, and as evident by the experimental results, provides
very good predictions also for large deformations.

We numerically solve the electrostatic Laplace equation in a domain containing the two fluids.
Substituting the resulting electric field into equation (3.3) yields the force distribution on the interface.
Figure 3(a) presents the DEP force distribution (stress) at the liquid–air interface for an electrode width
of le = 120, 180, 240 µm and a fixed film thickness of h = 100 µm, showing that the maximum is
achieved midway between the electrodes and decreases as the gap between the electrodes increases. This
is expected, because a larger distance between the electrodes leads to a proportionally smaller electric
field.

Observing figure 3(a), one may mistakenly conclude that the total force per unit depth on the interface,
FDEP =

∫ l/2
−l/2 fDEP d x, also decreases with the increase in le. However, as shown in the figure 3(d),

the total force is non-monotonic, and the cases le = 180, 240 µm provide a larger total force than
le = 120 µm, despite a lower maximum. Figure 3(b) presents the total force as a function of both le
and the film thickness h. Here, too, the non-monotonicity le is evident across all h values, where for
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Figure 3. Two-dimensional finite-element simulation results showing the behaviour of the DEP force
acting on the interface for electrode-pair configurations where the width of the electrodes is much
smaller than the chamber length, le � l. (a) The DEP force distribution on the interface along the
chamber for three different electrode widths, with h = 100 𝜇m, showing that the maximum achieved
midway between the electrodes, decreases as the width of the electrodes increases. (b) A colour map
showing the total force on the oil–air interface (integral over the DEP force distribution) as a function
of le and the film thickness h. The white dashed line indicates the electrode width that provides that
maximum force for a given h. (c) As expected, for a fixed electrode width, the force decreases as the
liquid thickness increases. We note the cross-over point indicating that the dependence of the force on
the electrodes gap is inverted for sufficiently large film thicknesses. (d) The total DEP force as a function
of the electrodes’ length for a fixed film thickness (h = 100 𝜇m), showing a non-monotonic dependence.
The circles correspond to each of the cases in panel a. The simulations were performed using l = 9 mm,
𝜀f = 2.5𝜀0, 𝜀a = 𝜀0 and V0 = 400 V.

any film thickness, the maximum total force is obtained when setting le = 1.85h. As a result, while for
h > 0.54le the total force increases with le, for h < 0.54le the dependence is inverted and the total force
decreases with le. This behaviour can also be seen more explicitly in figure 3(c), presenting the total
force as a function of h for different fixed le values, equivalent to tracing figure 3(b) along vertical lines.
The different decay rates of the force with h, result in the curves intersecting one another.

As presented in figure 3(a), the numerically obtained DEP force distributions strongly resemble a
Gaussian. To facilitate an explicit expression for the deformation, we thus approximate fDEP as a Gaussian
of width (standard deviation) le, and an amplitude a set such that its total force matches FDEP,

fDEP = a exp

[
−
(

x
le

)2
]
, a =

FDEP

le
√
𝜋 erf[l/2le]

. (3.10)

Under the long-wave approximation (Leal, 2007; Oron, Davis, & Bankoff, 1997), the interface
curvature can be approximated as d2h/d x2 = h′′(x) and equation (3.9) can be written as

𝛾h′′ − 𝜌gh + fDEP = Pa − P0. (3.11)
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We assume that the liquid is pinned at the edges of the chamber, h(−l/2) = h(l/2) = h0, providing
two boundary conditions which are sufficient to solve equation (3.11) as a function of the constant
pressure difference Pa − P0. To then obtain the value of Pa − P0, we require the total fluid volume to be
conserved,

∫ l/2
−l/2 h(x) d x = Vf . The complete solution, including the effect of gravity, is presented in the

SI. For brevity, we here provide the more compact expression for the case of g = 0 and Vf = h0l. It is
also convenient to present the solution in terms of the deformation of the liquid–air interface relative to
its initial state, d = h − h0,

d(𝜉) = A
(
(−8e−𝜉 2/c2 + 2e−1/c2 (1 + 3𝜉2))c + √

𝜋

(
(2 + 6𝜉2 − 3c2(𝜉2 − 1)) erf

[
1
c

]
− 8𝜉 erf

[
𝜉

c

] ))
,

(3.12)

where 𝜉 = 2x/l is the non-dimensional axial coordinate, c = 2le/l is the non-dimensional electrode
width and A = FDEPl/16𝛾

√
𝜋 erf[1/c].

In this work, we investigate only the case of c � 1, corresponding to narrow electrodes compared with
the length of the chamber. At this limit, the deformation magnitude scales with A, and is linear with the
chamber’s length, l and inversely proportional to the surface tension. Consistently with the assumption
of c � 1, the spatial gradients of the deformation, (d/d x)(d) = (d/d𝜉)(d)(2/l), are independent of the
chamber size l.

The solution for the deformation (3.12) is a function of the DEP force, which in turn depends on the
fluid thickness. Therefore, to solve for the deformation for a given voltage we use an iterative solver.
Using the DEP force calculated based on the initial fluid thickness, we obtain an initial solution for the
deformation. Updating the DEP force using the obtained height of the interface above the electrodes
yields a new solution for the deformation. We repeat the process until the relative change in interface
height between iterations (evaluated at x = 0) reduces below 10−5.

3.2. Experimental measurements

In figure 4(a) we present three-dimensional digital holographic measurements (Cuche, Marquet, &
Depeursinge, 1999) of the deformation of an oil–air interface due to an electric field produced by a
pair of parallel electrodes. The fluidic chamber has a width and length of l = 9 mm and depth of
approximately h0 = 120 µm. The electrodes have a width and gap of le = 120 µm and span the entire
length of the chamber. The dielectric fluid is a low-viscosity silicone oil with density 𝜌 = 913 kg m−3,
and surface tension 𝛾 = 20 mN m−1. We initially measure the oil–air interface in the absence of an
electric field. This measurement is subtracted from all subsequent measurements, thus allowing us to
isolate the deformation of the interface due to the electric field.

In figures 4(b) and 4(c) we compare the experimental data with the theoretical predictions for the
deformation along the x-axis, for different electrode widths and different fluid thicknesses. Increasing the
applied voltage increases the electric field and results in larger deformations. Similarly, decreasing the
initial liquid volume, which decreases the distance of the interface from the electrodes, also results in a
higher electric field and larger deformations. Both effects, as well as the details of the spatial deformation,
are captured by the model, in very good agreement with the experimental results. The results show that
the use of the long-wave approximation is well justified even for the largest deformations, where the
maximal slope of the interface is of the order of 100 µm over 1 mm.

Figure 5(a) presents the maximum deformation as a function of the applied voltage squared, showing
good agreement between theory and experiments. At low voltages, the deformation magnitude follows
well the voltage-squared dependence obtained from scaling of the DEP force. However, at higher
voltages, the maximum deformations are lower than those suggested by the scaling. This is precisely
because of the earlier mentioned coupling between the deformation and the electric force; at high
voltages, the deformation becomes significant enough to affect (reduce) the electric field at the interface.
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Figure 4. Experimental measurements and theoretical predictions of DEP-induced deformations
using the parallel electrode-pair configuration. (a) A typical experimental result showing the three-
dimensional shape of the deformations, resulting from actuation of a pair of electrodes positioned along
the y-axis. (b,c) The deformation along the x-axis at y = 0 for different applied voltages and initial liq-
uid volumes, respectively. The solid lines present the experimental results, and the dashed lines present
the theoretical predictions, obtained from the two-dimensional model equation (3.11). The maximum
deformation is achieved in the middle of the chamber, between the electrodes, and it increases as the
applied voltage increases and decreases as the fluid volume (fluid height above the electrodes) increases.
We use silicone oil with a dielectric permittivity of 𝜀f = 2.5𝜀0 and surface tension of 𝛾 = 20 mN m−1, a
square-shaped chamber with l = 9 mm, h0 = 120 𝜇m, le = 120 𝜇m and an AC voltage with a frequency
of 10 kHz.
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Figure 5. Comparison of experimental and theoretical results of the maximum deformation. (a) The
maximal deformation as a function of the voltage squared for le = 120 𝜇m and Vf = 8 𝜇l. The black
dashed line presents the theoretical prediction based on the one-dimensional model, the black crosses
present the experimental results and the blue dashed line represents the linear scaling with V2

0 . When
the deformation is small compared with the initial fluid thickness above the electrodes, the theoretical
solution scales linearly with V2

0 , yet as the deformation becomes comparable to the initial film thickness,
both theoretical and experimental results show a sub-linear behaviour with V2

0 , due to the inverse
scaling of the DEP force with the film thickness. (b) Normalized maximum deformation as a function
of the electrodes width for different voltages. The dashed lines present the theoretical predictions and
the crosses represent the experimental results. For low voltages (e.g. V0 = 100 V, black line), the
deformation decreases when the electrodes width le increases, but above a certain value of V0 the
deformation increases as le increases (e.g. V0 = 800 V, light grey line). This transition is associated
with the cross-over in the total force FDEP observed in figure 3(c).
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This coupling is also evident in figure 5(b) that presents the predicted and measured (normalized)
maximum deformations as a function of le, for different voltages. The dependence on le is different for
different voltages, to the extent that the trend is inverted between the lowest and highest voltages shown.
This could be explained by the fact that higher voltages are associated with larger film thickness. For
example, the case of 100 V yields deformations of several microns, whereas the 800 V case yields
deformations of approximately 100 µm (both relative to an initial thickness of 35 µm). These film
thickness values reside on opposite sides of the intersection region shown in figure 3(c), and thus the
inverted dependence on le is expected. This result elucidates that to achieve the maximum force, the
electrodes width and gap le should be chosen such that le = 1.85h in accordance with figure 3(b), but
where h is the post-deformation film thickness, rather than the initial one.

3.3. Fluid shaping

The electrode-pair configuration can serve as a basic unit for the creation of complex two-dimensional
electrode structures. Figure 6(a1) presents experimental measurements of the oil–air interface topogra-
phy resulting from the actuation of an electrode configuration tracing the letters ‘DEP’ on the surface
(figure 6b1). The deformation clearly shows peaks along the electrode pairs, and the letters are clearly
distinguishable. However, as also visible from the cross-section in figure 6(c1), the peaks are not well
separated. During our experiments, we found that reducing the liquid volume can significantly increase
the resolution and contrast of the deformation field. Figure 6(b2) presents the same electrode configura-
tion and applied voltage, but with 2 µl instead of 4 µl of liquid, resulting in its accumulation primarily
at the edges of the chamber and only minimally wetting of the floor. As a result, upon actuation of the
voltage, the liquid is drawn from the edges of the chamber toward the electrodes. Since the proximity of
the floor precludes significant negative deformations, as can be seen clearly from both figures 6(a2) and
6(c2), the resulting deformation shows a better separation of the peaks and consequently better-defined
letters. The same conditions can be applied to other electrode configurations, as shown in figure 6.3.
Here, the electrode pairs are patterned to form an outline of a Y-junction. Upon activation of the electric
field, each electrode pair produces a vertical wall, forming the physical boundaries of a 60 µm deep
and 1 mm wide Y-junction channel. As shown in supplementary movie S1, upon activation of the field,
the deformation is rapidly formed, can be easily modulated in amplitude, turned on and off and quickly
recovers from external forced disturbances.

Due to the nature of the liquid–air interfaces, the resulting surfaces of the produced structures are
very smooth. Thus, replacing the silicone oil with a polymer opens the door to a fabrication of smooth
solid structures. Figure 7(a) presents an example for a structure produced by deforming the interface
of a photopolymer using the Y-junction electrode configuration; after the steady-state deformation is
obtained, and while the electrodes are still active, we expose the film to 365 nm ultraviolet (UV) light
for five minutes which leads to its solidification. Figure 7(b) presents the shape of the interface along
a cross-section before polymerization (i.e. in liquid state) and following polymerization (i.e. in solid
state), showing good agreement between the two. Figure 7(c) presents the surface quality of the solidified
part. Fitting the measured data to a second-degree polynomial and subtracting it from the original curve
provides an estimate for the surface roughness, which is of the order of 3.2 nm root mean square (r.m.s.)
(figure 7d). The surface roughness may in fact be better, as this is the limitation of the digital holographic
microscope, as shown by measurements of an atomically polished wafer (SI figure S5).

4. Methods

We fabricated the devices using standard cleanroom microfabrication processes. We used a 4 in.
borosilicate glass wafer (Borofloat33, Wafer Universe, Germany) as a substrate on which we patterned
via lifting off a 6 nm consisting of 2 nm titanium, 2 nm platinum and 2 nm titanium. We used such a
thin layer because it is semi-transparent in the visible spectrum and thus reduces the reflection of the
holographic microscope’s laser beam. We defined the fluidic chamber’s walls by lithography processing
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Figure 6. Experimental results demonstrating the use of DEP-based deformation for the creation of
complex structures. Each configuration is based on pairs of electrodes deposited on a desired pattern
at the bottom of the fluidic chamber (b). Upon actuation of the electric field, the liquid deforms to
obtain the desired shape corresponding to the electrode configuration. The dashed and solid black
curves in the two-dimensional images present the shape of the interface before and after actuation,
respectively, along the x-axis denoted by a white line in the three-dimensional figure. (1) Using 4 𝜇l
of liquid, the initial interface is curved and the displacement of the liquid from the periphery into the
actuation region is distinctly visible in c1. Panel (a1) shows the resulting topography which reads ‘DEP’.
(2) using only 2 𝜇l of liquid, the initial interface at the centre of the chamber is nearly flat, which results
in accentuation of the deformations and improved resolution relative to the 4 𝜇l case, providing better
contrast and readability. (3) Using 2 𝜇l, we demonstrate the creation of a ∼1 mm wide, ∼60 𝜇m deep
microfluidic channel and a Y-junction.

of a 120–150 µm thick layer of SU8, created by spin coating of SU8-50 (Microchem AG, Germany) in
two sequential steps.

We performed the experiments by placing at the centre of the chamber a few microlitres of low-
viscosity silicone oil (cat. no. 317667, Sigma-Aldrich) of density 𝜌 = 913 kg m−3, refractive index n =
1.403 and surface tension 𝛾 = 20 mN m−1, measured using an optical tensiometer (Theta Flex, Biolin
Scientific). We used a wave generator (TG5012A, AIM-TTI Instruments) connected to an amplifier
(2210-CE, TREK) to deliver to the electrodes a 10 kHz sinusoidal AC electric potential at voltages
(peak to peak) of up to 900 V.

The measurements of the DEP induced deformations were obtained using a digital holographic
microscope (DHM-R1003, Lyncee Tec) through a 10× objective with a field of view of 0.5 × 0.5 mm2

(see detailed explanation in SI section 3). To obtain full coverage of the chamber area we used an
automated stage (MS 2000, ASI) working in synchronization with the DHM camera. We dictated a
constant movement of 407 µm and stitched the data to assemble the image of the entire oil–air interface.
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Figure 7. Experimental demonstration of the use of DEP-based deformation for the fabrication of
smooth solid structures. (a) Image of a Y-junction fabricated by deformation and polymerization of a
photopolymer. (b) Comparison of the cross-section along the chamber (indicated by the white dashed
line in a) before and after solidification of the polymer. (c) Zoomed-in view of the surface at x = 0 (solid
red curve) together with a second-order polynomial fit (black dashed curve). (d) The difference between
the raw data and the fit provides an estimation of the surface quality, yielding an r.m.s. value of 3.2 nm.

For the polymerization experiments, we used a UV curable polymer (CPS 1050, Colorado Polymer
Solutions) and activated the electrodes at a voltage of 400 V and frequency of 10 kHz. We solidified the
polymer using two 12 W UV lamps with a wavelength of 365 nm for 5 min.

5. Discussion and conclusions

We presented a theoretical model and an experimental demonstration of a new and practical approach
to create desired deformations of a liquid–fluid interface. Owing to their inherently smooth interfaces,
the ability to shape liquid films holds great promise as a method to create and modulate optical
components. We showed that the use of pairs of electrodes provides an effective method for creating
desired deformations. Beyond their ability to form highly localized deformations, from a practical
perspective, continuous parallel electrodes allow us to span significant portions of the working area
using only a single connection at the edge of each electrode. Furthermore, we showed that the distance
between the electrodes can be used to control the magnitude of deformation, allowing the deformation
to vary along the electrode-pair path.

In the current work, we studied the steady-state deformation of the system. When using a polymer,
the liquid film can be solidified to yield a permanent component that could be used outside of the DEP
system. However, one potential advantage of a fluidic system, particularly in the context of adaptive
optics (Mishra et al., 2014; Zohrabi et al., 2017), is the ability to dynamically modulate it, transitioning
from one configuration to another. Supplementary movie S2 demonstrates this concept using an array
of parallel electrodes, where the actuation transitions dynamically between one set to another.

We focused on deformations of an oil–air interface, with a dielectric constant ratio of approximately
2.5. As indicated by equation (3.3), the force is proportional to this ratio, and thus much larger deforma-
tions can be expected when using liquids with a higher dielectric constant. A natural candidate would
be water, with a relative permittivity that is ∼30-fold greater than that of silicone oil. For sufficiently
high frequencies, such a system can be considered to be governed by dielectric effects, yet for lower fre-
quencies, one must consider conductivity effects that would not only alter the force on the interface (see
SI section 1) but would also lead to additional effects such as Joule heating and internal flows which we
did not consider in this work. Our theory can also be directly applied to liquid–liquid configurations,
providing an opportunity to invert the permittivity ratio relative to the oil–air configuration, i.e. have the
liquid with the lower permittivity be in contact with the electrodes. In such a case, the resulting force on
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the interface will be toward the electrodes rather than away from them. This may lead to larger deforma-
tions, due to the pulling force further increasing as the interface approaches the surface. Beyond a certain
threshold, this is also expected to lead to instability and rupture of the film over the electrode’s region.
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