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We study the dynamics of freely moving plates connected by a shallow liquid bridge via analytic

and experimental methods. The gap between the plates is used as a small parameter within a

lubrication approximation, reducing the problem to an Abel equation of the second kind. Analysis

of the governing differential equation yields two novel physical phenomena: (1) An impulse-like

peak in the force applied by the liquid bridge on the plates, obtained from a uniform asymptotic

solution for small capillary numbers. (2) Both linear and non-linear oscillations of the system for

the case of surfaces with low wettability, obtained from small perturbations of the system around

the equilibrium point. An experimental setup examining the motion of freely moving plates was

constructed, yielding experimental data which compared favorably with the analytic results and

specifically displayed the predicted oscillations and impulse-like peak of the applied force. The

application of the current analysis to the manipulation of solid bodies and possible future research

directions are discussed. VC 2011 American Institute of Physics. [doi:10.1063/1.3643289]

I. INTRODUCTION

We study the dynamics of freely moving solid plates

connected by a shallow liquid bridge. This problem is rele-

vant to the adhesion1 and to the manipulation of solid bodies

by capillary forces (specifically to the release scheme of the

manipulated particles2–5), flip-chip applications6 and to

spreading of contamination on a freely moving solid in con-

tact with a flat plane filled with contaminated droplets. The

dynamics of the solid bodies affects the droplet topology and

will thus change the surface area in contact with the droplet

and the pressure distribution within the liquid, thus affecting

the spreading of contamination.7

The forces applied by liquid bridges connected to static

supporting surfaces were studied extensively.8 However, in

many applications it is common that at least one of the

bodies is moving, and thus, the motion of the solid body may

be influenced by the forces associated with the liquid

bridge.9–11 Pitois et al. studied12 the forces applied by a liq-

uid bridge connecting two spheres moving at a constant

speed relative to each other. Similarly, Meurisse and Querry

studied13 the effects of liquid bridges connecting two parallel

flat plates, moving perpendicularly to the plane of the plates,

at a constant speed or at a constant force applied on the liq-

uid. Both Pitois et al. and Meurisse and Querry observed a

rapid change from attractive force due to capillary effects to

repulsive force due to viscous effects for the case of surfaces

approaching each other at a constant speed. De Souza et al.
studied14 the effect of contact angle hysteresis on the capil-

lary forces in the absence of significant viscous forces and

obtained good agreement between the experimental data and

the existing models. Capillary force measurement of liquid

bridges was examined and shown to be a reliable method for

estimating advancing and receding wetting angles.

In this work we relate the effects of the momentum of

the solid plates to the flow field within the liquid bridge. The

inclusion of the solid plate momentum changes the order of

the governing ordinary differential equation, relative to exist-

ing works.12,13 Hence, the obtained model is not only more

accurate, but fundamentally different and reveals novel phe-

nomena that could not be described without the inclusion of

momentum effects, such as impulse like peak in the force

applied by the liquid bridge and linear and non-linear oscilla-

tions of the system.

II. ANALYSIS

A. Problem definition

The motion of an incompressible Newtonian fluid is

governed by the Navier-Stokes equations, consisting of con-

servation of mass,

~r � ~u ¼ 0; (1)

and conservation of momentum,

q
D~u

Dt
¼ � ~r~pþ l ~r2~uþ ~B; (2)

where q is density, p is pressure, t is time, u is the velocity,

B is body forces, and l is viscosity (tildes denote dimen-

sional variables). The motion of the center of mass of a rigid

solid body, in contact with the surrounding liquid and gas, is

governed by

@

@t
~M~uc

� �
¼
ðð
�

S

~p � n̂sð ÞdAþ eF; (3)

where M is the mass of the body, uc is the velocity of the

center of mass, n̂s is a unit vector perpendicular and pointing

inward to the surface of the solid body and F is the sum of

the external and body forces.

We limit our analysis to the case of a shallow liquid

bridge connected with two solid plates. External forces F1
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and F2 are applied to the center of mass of the solid bodies in

the z direction (geometry and coordinates are illustrated in

Fig. 1) and the problem is assumed axi-symmetric with regard

to the center of the liquid bridge. The relevant boundary condi-

tions supplementing the governing equations are no-penetration,

~v ~z ¼ ~s1ð Þ ¼ @~s1

@~t
; ~v ~z ¼ ~s2ð Þ ¼ @~s2

@~t
; (4)

no-slip at the solid boundaries,

~u ~z ¼ ~s1ð Þ ¼ 0; ~u ~z ¼ ~s2ð Þ ¼ 0; (5)

the dynamic stress balance at the free surface r ¼ rd z; tð Þ
(Ref. 15),

~s� � I~p�ð Þ � n̂� ~s� I~pð Þ � n̂þ c~kn̂ ¼ 0 at r ¼ rd z; tð Þ; (6)

the kinematic boundary liquid-gas condition at the free sur-

face ~u rdð Þ ¼ ~u� rdð Þ, the kinematic condition for the position

of the free surface,16

1

D r � rd z; tð Þð Þj j
@ r � rd z; tð Þð Þ

@t
þ u � n ¼ 0 at r ¼ rd z; tð Þ;

(7)

and initial conditions for the positions s1 t ¼ 0ð Þ, s2 t ¼ 0ð Þ
and speeds @s1 t ¼ 0ð Þ=@t, @s2 t ¼ 0ð Þ=@t of the solid bodies,

where the superscript * denotes the properties of the sur-

rounding gas, u is the radial speed, v is the axial speed, c is

the surface tension, and k is the local curvature.

B. Leading-order governing equation

We require that the characteristic length in the r direc-

tion, r0 is much larger than the characteristic length in the z
direction, z0,

e ¼ z0

r0

� 1: (8)

Substituting the z0 and r0 characteristic lengths into the con-

tinuity equation and performing order of magnitude analysis

we obtain

v0

u0

� z0

r0

¼ e; (9)

where u0 and v0 are the characteristic speeds in the r and z
directions, respectively. We define a characteristic time by

t0 � r0=u0. For small reduced Reynolds number,

eRe ¼ qv0z0=l� 1, and negligible gravity gqz0=p0 � 1,

order of magnitude analysis yields u0 ¼ p0e2r0

�
l where p0

is the characteristic pressure. The value of z0 and r0 is

defined by the gap between the surfaces at t ¼ 0 and the liq-

uid volume, V

z0 ¼ ~s2 t ¼ 0ð Þ � ~s1 t ¼ 0ð Þ; r0 ¼

ffiffiffiffiffiffiffi
~V

pz0

s
: (10)

Substituting these into Eq. (2) and utilizing the axi-

symmetry of the problem, we obtain the leading-order mo-

mentum conservation equations,17

@p

@r
� @

2u

@z2
þ O e2; eRe

� �
(11)

and

@p

@z
� O e2; e3Re;

qgz0

p0

� �
: (12)

Assuming the viscosity of the surrounding gas is small in

comparison with the liquid, l� � l, the normalized dynamic

stress balance at the gas-liquid interface is

I p� p�ð Þ � n̂þ k
e2

Ca
n̂ � O eð Þ; (13)

where Ca ¼ lv0=c. For the case of Ca � e2, the wetting

angles will approach their static advancing or receding val-

ues18,19 and for the case of Ca� e2 the influence of surface

tension is negligible and thus Eq. (13) is valid in the leading-

order for any value of Ca.

As e! 0, and under the above assumptions, the shape

of the liquid surface in leading-order is part of a circular arc.

The curvature at the liquid-gas interface is thus obtained

from geometric relations20 as k � cos h1ð Þ þ cos h2ð Þ½ 	ð Þ=
s2 � s1ð Þ, where h1 and h2 are the contact angles at the bot-

tom and upper plates, respectively. Integration of Eq. (11)

with regard to z and the application of the no-slip boundary

conditions (5) yields21

u ¼ @p

@r

z� s1ð Þ2

2
� s2 � s1ð Þ z� s1ð Þ

2

" #
: (14)

We substitute u into Eq. (1), integrate with regard to z from

s1 to s2, integrate with regard to r and present the pressure

distribution in terms of hð¼ s2 � s1Þ
FIG. 1. A schematic description of the coordinate system and the liquid

bridge (gray area) connecting two solid bodies.

097101-2 Gat, Navaz, and Gharib Phys. Fluids 23, 097101 (2011)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.102.42.98 On: Mon, 24 Nov 2014 05:28:00



pðr; z; tÞ � p� ¼ ðr2 � r2
dðtÞÞ

@hðtÞ
@t

3

h3ðtÞ

� e2

Ca

cosðhuÞ � cosðhdÞ
hðtÞ : (15)

Using the leading order relation r2
d tð Þh tð Þ � r2

d 0ð Þh 0ð Þ and

integrating with regard to r from 0 to rd, the force applied by

the liquid on the solid bodies, Fl tð Þ, is related to h tð Þ 13

FlðtÞ ¼ �
3p

2h5ðtÞ
@hðtÞ
@t
� p

e2

Ca

cosðhuÞ þ cosðhdÞ
h2ðtÞ (16)

(the force acting on solids 1 and 2 is �Fl and Fl, respec-

tively, see Fig. 1). The magnitude of the capillary force act-

ing at the triple phase contact line scales as � cr0 and is

negligible in comparison with the � cr0=e force associated

with the capillary pressure for the case of shallow liquid

bridges.20 Thus, the force acting in the triple phase contact

line is not included in the current approximation.

For a freely moving solid body, the force applied by the

liquid bridge is balanced by external and body forces acting

on the solid body and the rate of change of momentum.

Combining the equations of conservation of momentum for

the solid bodies, we can present the momentum conservation

with regard to h

~M1
~M2

~M1 þ ~M2

e4v0

lz2
0

@2h

@t2
¼ Fl tð Þ þ

~F2
~M1 � ~F1

~M2

~M1 þ ~M2

e4

v0z0l
: (17)

This equation is supplemented by (but not dependent on)

the conservation of momentum for the center of mass of the

entire system, which is readily solved for a known h tð Þ. We

thus define dimensionless mass and force by

M ¼ ~M1
~M2e4v0

�
~M1 þ ~M2

� �
lz2

0 and F ¼ ~F2
~M1 � ~F1

~M2

� �
e4
�

~M1 þ ~M2

� �
v0z0l, respectively. We further simplify the equa-

tion by defining a modified capillary number,

Ca ¼ Ca

pe2½cosðhuÞ þ cosðhbÞ	
: (18)

Equation (17) thus can be presented as

M
@2h

@t2
þ 3p

2h5

@h

@t
� F tð Þ þ 1

Cah2
¼ 0: (19)

By substituting w ¼ @h=@t and assuming a constant external

force, F, we reduce the order of the problem and Eq. (19) is

transformed to the Abel equation of the second kind

Mw hð Þ @w hð Þ
@h

þ 3p
2h5

w hð Þ � Fþ 1

Cah2
¼ 0: (20)

C. Uniform asymptotic solution for the limit of small
capillary numbers

For small capillary numbers Ca� 1 and h � O 1ð Þ, vis-

cosity is negligible in comparison with the capillary force,

thus requiring (at least one of) the dimensionless mass and

force values to be of order of � OðCa
�1Þ. The governing

Equation (20) is thus reduced to

CaMw hð Þ @w hð Þ
@h

� CaF tð Þ þ 1

h2
� O Ca

� �
; (21)

and the outer-region leading-order solution wo is, thus,

woðhÞ� ½w2 hð0Þð Þ	2þ2
F

M
ðh�hð0ÞÞþ2

1

CaM

1

h
� 1

hð0Þ

� �� 	1
2

:

(22)

We define an inner coordinate H ¼ h
�
d Ca
� �

and require

H � O 1ð Þ as Ca! 0. Substituting into the governing equa-

tion we obtain

MwðHÞ
d Ca
� � @wðHÞ

@H
þ 3p

2H5d5 Ca
� �wðHÞ�Fþ 1

Cad2 Ca
� �

H2
¼ 0:

(23)

Order of magnitude analysis yields d Ca
� �

� Ca
1=3

and thus

an inner-solution is given by

wi Hð Þ � 2H3

3p
: (24)

As h! 0 the outer solution wo !1 and as the stretched

inner coordinate H !1 the inner solution wi !1. Thus,

in order to facilitate matching, the inner and outer solutions

are multiplied by exp �H2Ca
1=3


 �
and exp �Ca

1=3
.

h2

 �

,

respectively. Both expressions scale as � 1þ O Ca
1=3


 �
in

the inner and outer regions, defined by H � O 1ð Þ and

h � O 1ð Þ, respectively, and thus the multiplication does not

affect the leading-order solutions in their respective region

of validity. The obtained matched uniform asymptotic

approximation is given by

wðhÞ � ½wðhð0ÞÞ	2 þ 2
F

M
ðh� hð0ÞÞ þ 2

CaM

1

h
� 1

hð0Þ

� �� 	

 exp �h�2Ca

1=3

 �

� 2h3

3pCa
exp �h2Ca

�1=3

 �

þ O Ca
1=3


 �
: (25)

While the asymptotic solution will approach the exact solu-

tion as Ca! 0, the error for a given finite value of the small

parameter it is not known. We thus vary the value of Ca in

order to obtain a quantitative estimate of the agreement

between the numerical solution of the equation and the as-

ymptotic approximation, as well as to examine the influence

of the capillary number on the h; @h=@tð Þ curve. Fig. 2

presents the distance between the surfaces, h, versus the rela-

tive speed, @h=@t. The uniform asymptotic solution (25) and

the numerical solution of the governing Equation (20) are

marked by dashed and smooth lines, respectively. The physi-

cal parameters are M ¼ 102, F ¼ �102, w 1ð Þ ¼ 0, and the

indicated values of Ca. The relative differences between the

asymptotic and analytic solutions scale as Ca
1=3

and the

position of the transition between the inner and outer regions

increases with the capillary number, as expected from the

analysis.
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D. Limit of large capillary numbers

For negligible external force, F, and Ca!1, the gov-

erning Equation (20) is reduced to M@w hð Þ=@h � �3p
�

2h5

and we thus obtain

w� w h 0ð Þð Þ � 3p
8M

1

h4
� 1

h4 0ð Þ

� �
: (26)

The limit h t!1ð Þ can be presented as a function of the

normalized mass, M, and the initial conditions h 0ð Þ and

@h 0ð Þ=@tð¼ w h 0ð Þð ÞÞ, by h t!1ð Þ � h�4 0ð Þ � 8Mw 0ð Þ=ð
3pÞ�

1
4. The value of h t!1ð Þ represents the distance in

which the entire momentum of the solid bodies, relative to

each other, is dissipated within the liquid bridge and both

solid bodies move at an identical speed.

E. Oscillating solutions

For the case of different advancing and receding wetting

angles, oscillations will affect the value of the capillary num-

ber. We thus define the new parameters CaM and D by

Ca
�1

M ¼ Ca
�1

A þ Ca
�1

R


 �.
2 and D ¼ Ca

�1

A � Ca
�1

R


 �.
2,

where CaA and CaR are the capillary numbers based on the

advancing and receding wetting angles, respectively. By

introducing perturbations around the point h0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=FCaM

q
,

which can be described as h � h0 þ e1h1 and requiring

e� e1 � 1, the governing equation is simplified to

M
@2h

@t2
þ 2hD

h3
0

@h

@t

���� �����1

þ 3p

2h5
0

 !
@h

@t
� 2h

h3
0CaM

� 0: (27)

Equations of the form @2y
�
@t2 þ f yð Þ@y=@tþ Cy ¼ 0 are

common within the theory of nonlinear oscillations,22 sug-

gesting oscillatory solutions in the current problem. Further-

more, for D! 0, i.e., small differences between the advancing

and receding wetting angles, the equation is transformed to a

linear harmonic oscillator with normalized undamped angular

frequency, w0, and damping ratio, f, estimated as

w0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

M
�Ca
� �1

2 �Fð Þ
3
2

r
; f � 3p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

M
�Ca
� �9

2 �Fð Þ3
r

:

(28)

F. Manipulation of a solid body by liquid bridges

The manipulation of solid bodies by capillary forces

commonly involves an externally controlled surface2–4

which speed and position are determined independently of

the forces associated with the liquid bridge (see Fig. 3(a)).

Our analysis can be readily applied to these configurations

by modeling the controlled surface as a solid body with

mass, ~M2, which is order of magnitude greater than the mass

of the manipulated solid body, ~M1, and where the motion of

the controlled surface is determined by selecting the value of
~F2. (These configurations may require spacers1 or a cavity in

the controlled surface2 in order to limit the minimal value of

the gap between the surfaces, as illustrated in Fig. 3.)

Obata et al.4 suggested a manipulation scheme based on

the capillary forces between a fixed surface, a solid body and

an externally controlled surface connected by liquid bridges

(see Fig. 3(b)). Using the current approximation, we can

relate the speed of the controlled upper surface (defined by

@hU tð Þ=@tþ @hL tð Þ=@t) to the required movement of the

manipulated solid body, hL tð Þ. This yields a second-order

non-linear ordinary differential equation, similar to Eq. (19)

3p

2h5
U

@hU

@t
þ 1

CaUh2
U

¼ M
@2hL

@t2
� F tð Þ þ 3p

2h5
L

@hL

@t
þ 1

CaLh2
L

;

(29)

FIG. 2. Comparison between the uni-

form asymptotic solution (dashed lines)

and numerical solution (solid lines) for

the case of w 1ð Þ ¼ 0, F ¼ �102,

M ¼ 102, and Ca
1=3 ¼ 0:15, 0:1 and

0:05, corresponding to (a), (b), and (c),

respectively.

FIG. 3. Schematic description of a solid

body connected to an externally con-

trolled surface (a) and to both a con-

trolled surface and a fixed surface (b).

(The black squares represent spacers

limiting the minimal distance between

the surfaces.)
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where CaU and CaL are defined by Eq. (18) and the appropri-

ate wetting angles of the controlled, manipulated and fixed

surfaces. The parameters M and F are defined by

M ¼ ~Me4v0

�
lz2

0 and F ¼ ~Fe4
�

v0z0l, respectively, where ~M
is the dimensional mass of the manipulated solid and ~F is the

dimensional force acting on the manipulated solid. For the

case of small values of CaU � 1 and hU � O 1ð Þ, the dissipa-

tion of momentum due to viscosity in the upper liquid bridge

is negligible and the governing equation is simplified, thus

yielding an explicit approximation for hU tð Þ

hU �
ffiffiffiffiffiffiffiffiffi

1

CaU

s
M
@2hL

@t2
� F tð Þ þ 3p

2h5
L

@hL

@t
þ 1

CaLh2
L

� ��1
2

: (30)

III. RESULTS

A. Oscillations and impulse-like spikes in the force

Fig. 4 presents the force acting on the plates as a func-

tion of time for F ¼ 0, M ¼ 1, Ca ¼ 0:25, 0:5, 1, and 2 (dot-

ted, dashed, smooth, and dashed-dotted lines, respectively)

obtained from numerical solution of Eq. (19). In all cases,

h 0ð Þ ¼ 1 and @h 0ð Þ=@t ¼ 0. For greater values of the capil-

lary number (Ca ¼ 2), the applied force is attractive through-

out the movement of the solid bodies. However, as the

capillary number Ca decreases a positive peak in the force,

created by the viscous resistance of the liquid, is evident and

increases as Ca decreases. This behavior may appear to be

counterintuitive, since the value of the capillary number

increases with viscous resistance. It is, however, explained

within the context of the uniform asymptotic approximation

developed in Sec. II C, describing an inner and outer regions

for the limit of small Ca. Viscous resistance is a negligible in

the outer region and a dominant mechanism in the inner

region. The inner region is defined by h � Ca
1=3

and thus as

the capillary number decreases the viscous resistance is con-

centrated at a smaller region, creating impulse-like spikes of

viscous repulsive force between the plates for the limit of

Ca.

Fig. 5 focuses on small capillary numbers and presents h
versus time (a,b) and force vs. time (c,d). The physical pa-

rameters are Ca ¼ 10�2 (a,c), �10�2 (b,d), the mass is

M ¼ 102, 103, and 104 (dotted, dashed, and smooth, respec-

tively) and the external force is F ¼ �103. We observe

impulse-like spike in the force applied by the liquid bridge

in the transition between the inner and outer-regions. The

magnitude of the impulse increases with M, although the

external force and capillary attraction remain unchanged.

For the negative values of Ca (wetting angles of h > 90�),
oscillations of the system occur and the distance between the

plates asymptotes to a finite value which is independent of

the value of M.

B. Comparison with experiments

The experimental setup consists of a linear stage actua-

tor (ThorlabsTM LNR50SEK1) controlling the distance

between two parallel plates, a load cell (InterfaceTM MB-

LBF5) measuring the force acting on the solid body and two

optical windows (NewportTM 20BW40-30) used as the upper

and lower plates (see Fig. 6). A feedback control loop was

created, connecting the load-cell force input, the actuator

position and speed inputs and outputting the upper plate

acceleration and speed. The feedback loop was programed to

simulate a freely moving solid body with a given mass ~M1,

reacting to external forces and the force applied by a liquid

bridge connected to a solid body with mass ~M2 !1. The

plates are cleaned before each experiment by Acetone, Iso-

propanol, and Nitrogen gas. The advancing and receding

wetting angles were estimated from quasi-static force meas-

urements (method suggested and validated by de Souza et
al.14). Fig. 7 presents experimental and theoretical values of

the force applied by static liquid bridge, for both advancing

and receding contact angles, on the supporting solid plates

(de Souza et al.14). Square, circle, and triangle signs mark

experimental data for the case of advancing water, advancing

mercury, and receding mercury contact angles, respectively.

The experiments utilized 10�7½m3	 DI-water droplet and a

5 � 10�8½m3	 mercury droplet. The wetting angle was esti-

mated from least square minimization of the discrepancies

between the analytic model and the experimental measure-

ments, yielding contact angle values of 75�, 120�, and 116�

for advancing water (smooth line), advancing mercury

(dashed line), and receding mercury (dotted line),

respectively.

Fig. 8 presents experimental results for 3 � 10�8½m3	 DI

water liquid bridge with advancing wetting angle of 75� with

regard to the fused-silica plates and physical properties of

l ¼ 10�3½pa1s1	, c ¼ 0:072½J1m�2	, and q ¼ 103½Kg1m�3	.
The plates are positioned at ~h 0ð Þ ¼ 5 � 10�4½m	 with initial

relative speed @ ~h 0ð Þ=@~t ¼ 0 and the movement of the plates

was limited to ~h 0ð Þ > 5 � 10�5½m	. The feedback control loop

was programmed to simulate solid bodies with mass of
~M1 ¼ 500½Kg	 and ~M2 !1 (connected to the ground)

FIG. 4. Fl vs. t for Ca ¼ 0:25, 0:5, 1, and 2 (dotted, dashed, solid, and

dashed-dotted lines, respectively) obtained from numerical solution of Eq.

(19). In all cases, h 0ð Þ ¼ 1, @h 0ð Þ=@t ¼ 0, F ¼ 0, and M ¼ 1.
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without any external forces or gravity. Fig. 9 presents the ex-

perimental results for the case of liquid mercury with the

physical parameters ~hð0Þ ¼ 1:5 � 10�3½m	, @ ~hð0Þ=@~t ¼ 0,
~M1 ¼ 100½kg	, ~M2 !1, ~F1 ¼ �0:2½N	, ~V ¼ 10�7½m3	,
l ¼ 1:5 � 10�3½pa1s1	, c ¼ 0:486½J1m�2	, and q ¼
1:35 � 104½kg1m�3	. These parameters were chosen in order

to slow the time scale of the experiment and thus allow for

higher resolution of the experimental results (see Eq. (28)).

A reasonable agreement between the analytic model

(smooth line, Eq. (20)) and the experimental data (dashed

line) is evident in both Figs. 8 and 9, where the experimental

uncertainty is marked by the gray lines. In Fig. 8(a), we

FIG. 5. The gap h between the solid

bodies (a,b) and the force Fl applied by

the liquid on the solid bodies (c,d) vs. t
for Ca ¼ 10�2 (a,c) and Ca ¼ �10�2

(b,d). In all cases, the normalized physical

parameters are h 0ð Þ ¼ 1, @h 0ð Þ=@t ¼ 0,

F ¼ �103, M ¼ �102, 103, and 104 (dot-

ted, dashed, and solid lines, respectively).

FIG. 6. (Color online) The experimental

setup (a), a DI water liquid bridge (b),

and mercury liquid bridge (c) connecting

two fused-silica plates.
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observe a sharp transition from capillary attraction between

the plates to the spike-like impulse in the repulsive force due

to viscous resistance, as expected from the analysis. Fig. 8(b)

presents the relative speed between the plates, @h=@t, as a

function of the separation gap h in order to enable compari-

son with the uniform asymptotic approximation (Eq. (25);

Fig. 2). As mentioned in Sec. II C, for h! 0 the outer solu-

tion wo !1 and as the stretched inner coordinate H !1
the inner solution wi !1. This in turn creates a maxima

point of the speed between the plates, representing the transi-

tion between the inner and outer regions. The characteristic

speed and length scale are z0 � 5 � 10�4½m	 and

u0 � 10�4½m=s	, respectively, yielding a capillary number of

the order of Ca � 10�4. The predicted maxima in the rela-

tive speed between the plates are observed at h � Ca
1=3

in

Fig. 8(b), similarly to the results presented in Fig. 2.

In Fig. 9, we observe oscillations with regard to h (part

a), the gap between the plates, and the associated spikes of

the force applied by the liquid bridge (part b). Comparing

the frequency and damping ratio of the experimental oscilla-

tions to the values estimated by the linear harmonic oscilla-

tor approximation, Eq. (28) yields similar values of the

oscillation frequency (theoretical angular frequency of

w0 ¼ 2:85½rad=s	 and experimental value of

w0 � 2:4½rad=s	). However, the damping ratio is different by

order of magnitude relative to the value given by Eq. (28),

suggesting that the main mechanism for damping emanates

from the non-linear term associated with the difference

between the advancing and receding wetting angles. We also

observe small oscillations persisting after the decay of the

initial oscillations, unpredicted by the model, and with dif-

ferent oscillation frequency compared with the initial oscilla-

tions. From visual observations of the liquid mercury triple

phase contact line, it is evident that the contact line is fixed

and the oscillations are of the wetting angle only. Since these

oscillations are of first-order, they are not explained by the

current leading-order model and more research is required

on this subject.

IV. CONCLUDING REMARKS

For small capillary numbers there is an impulse-like

peak in the force applied on the flat surfaces by the liquid

bridge, occurring in the transition between the inner- and

outer-region. Oscillations may occur for the case of low

wettability of the liquid (wetting angle >90�) and the fre-

quency of the oscillations has been estimated by the lineari-

zation of the governing equation. The damping of the

oscillations is related to the viscous resistance and to the

nonlinear term associated with the difference between the

advancing and receding wetting angles. Using the current

approximation, a second-order non-linear ordinary differen-

tial equation describing the motion of a solid body connected

by liquid bridges to two flat planes is obtained and can be

used to facilitate analysis for the manipulation of solid

bodies by capillary forces.4

The results of the current analysis suggest several possi-

ble future research directions, including: (1) Analysis of a

FIG. 7. Estimation of advancing and receding contact angles from quasi-

static force measurement of liquid bridges (following de Souza et al.14).

Square, circle, and triangle signs mark experimental force measurements of

advancing water, advancing mercury, and receding mercury contact angles.

The experiments utilized 10�7½m3	 DI-water droplet and a 5 � 10�8½m3	 mer-

cury droplet. The smooth, dashed, and dotted lines mark theoretical data for

force applied by a static liquid bridge (de Souza et al.14), where the wetting

angle was obtain from least squares optimization with regard to the relevant

experimental results.

FIG. 8. Comparison of Fl vs. t (a) and h
vs. @h=@t (b) between theoretical (solid

lines, Eq. (20)) and experimental (dashed

lines) results. The gray lines mark the

uncertainty of the experimental measure-

ments. The physical parameters of the

experiment are ~h ¼ 5 � 10�4½m	, @ ~h 0ð Þ
�

@~t ¼ 0, ~M1 ¼ 500½kg	, ~M2 � ~M1,
~V ¼ 3 � 10�8½m3	, l ¼ 10�3½pa1s1	,
c ¼ 0:072½J1s�2	, and q ¼ 103½kg1m�3	.
The advancing wetting angle is 75� (cal-

culated from static force measurements)

and the experiment was stopped at
~h ¼ 5 � 10�5½m	.
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liquid bridge as a controlled shock absorber, where the

damping will be modified by changing the wetting angles

(e.g., by electric fields). (2) Use of the oscillations and the

associated force and pressure spikes to enhance diffusion

into porous materials (drug delivery). This can be achieved

by creating perturbations in the natural frequency of the sys-

tem. (3) Obtaining solutions for the equation describing the

manipulation of a solid body and extending the analysis to

non-flat surfaces. (4) Analysis of the first-order oscillations

of the wetting angle observed in the experimental data.
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FIG. 9. Comparison of Fl vs. t (a) and h
vs. t (b) between the theoretical model

(solid lines), and experimental data

(dashed lines). The gray lines mark the

uncertainty of the experimental meas-

urements. The physical parameters of

the experiment are ~hð0Þ ¼ 1:5 � 10�3½m	,
@ ~hð0Þ

�
@~t ¼ 0, ~M1 ¼ 100½Kg	, ~M2

� ~M1, ~F1 ¼ �0:2½N	, ~V ¼ 10�7½m3	,
l ¼ 1:5 � 10�3½pa

1
s1	, c ¼ 0:486½J1m

�2	,
and q ¼ 1:35 � 104½kg1m�3	. The

advancing and receding wetting angles

are ha ¼ 120� and hr ¼ 116� (calculated

from static force measurements).
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