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Interfacial instability of thin films in soft microfluidic configurations actuated 2

by electro-osmotic flow 3
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We analyze the interfacial instability of a thin film confined between a rigid surface 7

and a prestretched elastic sheet, triggered by nonuniform electro-osmotic flow. We derive 8

a nonlinear viscous−elastic equation governing the deformation of the elastic sheet, de- 9

scribing the balance between viscous resistance, the dielectric and electro-osmotic effects, 10

and the restoring effect of elasticity. Our theoretical analysis, validated by numerical 11

simulations, shows several distinct modes of instability depending on the electro-osmotic 12

pattern, controlled by a nondimensional parameter representing the ratio of electro-osmotic 13

to elastic forces. We consider several limiting cases and present approximate asymptotic 14

expressions predicting the electric field required for triggering of the instability. Through 15

dynamic numerical simulations of the governing equation, we study the hysteresis of the 16

system and show that the instability can result in an asymmetric deformation pattern, even 17

for symmetric actuation. Finally, we validate our theoretical model with finite-element 18

simulations of the two-way coupled Navier equations for the elastic solid, the unsteady 19

Stokes equations for the fluid, and the Laplace equation for the electric potential, showing 20

very good agreement. The mechanism illustrated in this work, together with the provided 21

analysis, may be useful in toward the implementation of instability-based soft actuators for 22

lab-on-a-chip and soft-robotic applications. 23

DOI: 10.1103/PhysRevFluids.00.004200 24

I. INTRODUCTION 24

Interfacial instabilities of thin liquid films with a free-surface subjected to temperature gradients 25

or chemical gradients have been extensively studied for over six decades [1,2]. These Marangoni 26

instabilities are induced by forces acting on the liquid−fluid interface and do not exist in fluidic 27

systems with solely no-slip liquid−solid interfaces. In recent years there has been a growing interest 28

in similar type of problems involving elastic sheets suspended on thin liquid films, where elastic 29

effects determine the evolution of the interface geometry. In particular, much attention was given to 30

investigate the fluid and solid mechanical instabilities in blistering, which forms when an injected 31

viscous fluid peels an elastic sheet from a solid surface [3]. Few viscous−elastic instabilities of the 32

fluid−elastic interface have been reported to date, including snap-through instabilities induced by 33

the interaction between a buckled elastic arch and viscous flow [4], as well as wrinkling of lubricated 34

elastic sheets under compression [5–7]. However, given the similarity between free-surface thin-film 35

equations and those describing the dynamics of a lubricated elastic sheet, one would expect similar 36

(closely analogous to Marangoni) interfacial instabilities to occur in elastic-plated thin films and no 37

such studies have been presented to date. 38
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Configurations involving viscous flows bounded by elastic structures are relevant to a wide39

spectrum of applications such as fabrication of flexible microelectro-mechanical systems [8,9],40

suppression of viscous fingering instabilities [10–12], impact mitigation [13], fabrication of mi-41

crofluidic devices [14–19], and soft robotics [20–23]. In particular, Inamdar and Christov [24]42

studied the transient fluid−structure interaction in a two-dimensional elastic micro-channel and43

developed a one-dimensional lubrication model, which accounts for bending and nonlinear induced44

tension, as well as the inertia of solid and liquid. Meanwhile, Martínez-Calvo et al. [25] extended45

the steady analysis of Christov et al. [19] for a slender geometry to the transient case by accounting46

for fluid and solid inertia in the lubrication and Kirchhoff−Love equations, respectively.47

Viscous flows bounded by elastic substrates are also often encountered in lab-on-a-chip and48

microfluidic devices, in which electro-osmotic flow (EOF) is a commonly used driving mechanism.49

EOF is the bulk fluid motion arising from the interaction of an externally applied electric field50

with the net charge at a solid−liquid interface. In previous works, we have suggested the use of51

nonuniform electro-osmotic flow as an actuation mechanism to create desired dynamic deformations52

in a lubricated elastic sheet by inducing internal pressure gradients in the fluid [26,27]. Considering53

small deformations and strong prestretching of the lubricated elastic sheet, we examined the linear54

and weakly nonlinear viscous−elastic interaction driven by nonuniform EOF, which exhibited stable55

behavior [27]. Since the pressure, formed due to EOF, scales inversely with the thickness of the56

liquid film, sufficiently negative pressures can trigger instability of the liquid−elastic interface,57

which acts to diminish the thickness of the film. We have recently demonstrated this concept for the58

simplified case of a plate−spring model, accounting only for temporal dynamics between two rigid59

plates [28].60

In this theoretical work, we analyze the complete nonlinear viscous−elastic interaction in the61

case of large deformations and examine the spatiotemporal evolution of the interfacial instability62

of a prestretched elastic sheet subjected to nonuniform EOF. In Sec. II, we present the problem63

formulation and the equations governing the viscous−elastic dynamics for constant voltage and64

constant current actuation modes. We provide their scaling and summarize the key nondimensional65

parameters and assumptions used in the derivation of the model. Focusing on the case of a constant66

applied current, in Sec. III we present a linear stability analysis of the system and further provide an67

analytic expression of the threshold electric field for the onset of instability in a gravity-dominant68

regime. Using dynamic numerical simulations, in Sec. IV we consider both a constant voltage and69

a constant current actuation modes and examine the interfacial instability under various physical70

conditions, showing the existence of hysteresis for the onset of instability. We further explore71

the effect of bending on the onset of instability and provide closed-form expressions for the72

threshold electric field in tension- versus bending-dominant regimes. In Sec. V, we demonstrate73

that the system may exhibit distinct modes of instability depending on the magnitude and the74

spatial form of the electro-osmotic pattern. Specifically, we show that the instability can result75

in an asymmetric deformation pattern, even for a symmetric actuation. In Sec. VI, we perform76

finite-element numerical simulations to validate the results of our theoretical model and show a77

very good agreement between the two. We conclude with a discussion of the results in Sec. VII.78

II. PROBLEM FORMULATION AND GOVERNING EQUATIONS79

We study the viscous−elastic dynamics and interfacial instability of a thin liquid film subjected80

to nonuniform EOF and confined between a flat rigid surface and a prestretched elastic sheet of81

length l̃m, thickness h̃m, density ρ̃m, Young’s modulus ẼY , and Poisson’s ratio ν. Figure 1 presents82

a schematic illustration of the configuration and the Cartesian coordinate system (x̃, z̃), whose x̃83

axis lies at the lower flat surface and z̃ is perpendicular thereto. We denote dimensional variables by84

tildes, normalized variables without tildes and characteristic values by an asterisk superscript.85

The fluid density and viscosity are respectively ρ̃ and μ̃, the fluid velocity is ũ = (ũ, w̃) and86

fluid pressure is p̃. The total gap between the plates is h̃(x̃, t̃ ) = h̃0 + d̃ (x̃, t̃ ), where t̃ is time and87

h̃0 is the initial gap. The deformation field d̃ (x̃, t̃ ) is induced due to an internal pressure formed88
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FIG. 1. Schematic illustration of the examined configuration, showing the coordinate system and relevant
physical and geometric parameters. A thin viscous liquid film of initial thickness h̃0 is confined between a rigid
surface and a prestretched elastic sheet of length l̃m and thickness h̃m, supported at its boundaries. nonuniform
electro-osmotic flow, induced by an EOF slip velocity ũEOF(x̃, t̃ ), creates negative pressures within the viscous
fluid, resulting in viscous−elastic interaction, which leads to deformation d̃ (x̃, t̃ ) of the elastic sheet. Above a
certain threshold of the electric field, the system exhibits instability which collapses the elastic sheet onto the
floor.

by a nonuniform and time-varying electro-osmotic slip velocity ũEOF(x̃, t̃ ) on the rigid surface. The 89

characteristic velocities in the x̂ and ẑ directions are respectively ũ∗ and w̃∗, and the characteristic 90

pressure, deformation, and time are respectively denoted as p̃∗, d̃∗, and t̃∗. We assume that surface 91

roughness prevents complete contact between the elastic sheet and the bottom surface, and denote 92

this by a minimal gap h̃r . Our assumption that the elastic sheet remains wetted even when in contact 93

with the surface is similar to the prewetting modeling introduced in work by Ref. [9]. 94

A. Governing equations in dimensional form 95

Considering a shallow fluid layer and negligible fluidic inertia, represented by small reduced 96

Reynolds number, 97

ε = h̃0

l̃m
� 1, εRe = ε

ρ̃ũ∗h̃0

μ̃
� 1, (1)

the fluid motion is governed by the lubrication equations [29] 98

∂ ũ

∂ x̃
+ ∂w̃

∂ z̃
= 0,

∂ p̃

∂ x̃
= μ̃

∂2ũ

∂ z̃2
,

∂ p̃

∂ z̃
= −ρ̃g̃, (2)

where g̃ is the acceleration of gravity acting in −ẑ direction. These equations are subjected to the 99

electro-osmotic slip and the no-penetration boundary conditions at the bottom surface, as well as 100

the no-slip and the kinematic boundary conditions at the fluid−elastic interface, 101

(ũ, w̃)|z̃=0 = (ũEOF(x̃, t̃ ), 0), (ũ, w̃)|z̃=h̃ =
(

0,
∂ h̃

∂ t̃

)
, (3)

where ũEOF(x̃, t̃ ) is the electro-osmotic slip velocity, which in the thin-double-layer limit is given by 102

the Helmholtz−Smoluchowski equation [30], 103

ũEOF(x̃, t̃ ) = − ε̃ζ̃ (x̃)

μ̃
Ẽ (x̃, t̃ ), (4)

wherein ε̃ is the fluid permittivity, ζ̃ is the ζ potential, and Ẽ is the applied electric field. We examine 104

configurations where the electric field Ẽ (x̃, t̃ ) is created either by applying a constant electric current 105

Ĩ or a constant voltage drop Ṽ . For comparison between the two actuation modes, we consider that 106

initially they both induce the same electric field Ẽ0. 107
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The explicit expressions of the electric field Ẽ (x̃, t̃ ) for both actuation modes are108

Ẽ (x̃, t̃ ) = Ẽ0
F̃ (t̃ )

h̃(x̃, t̃ )
, F̃ (t̃ ) =

{
h̃0 Constant applied current,

l̃m∫ l̃m
0 h̃(x̃,t̃ )−1dx̃

Constant applied voltage,
(5)

with details of the derivation provided in Appendix A. We note that in the lubrication limit of109

shallow configurations, the electric field is independent of the z̃ coordinate to the leading order in ε110

[31].111

Following standard lubrication theory, from Eqs. (2) and (3), the evolution of the fluid−elastic112

interface, h̃(x̃, t̃ ), with respect to the rigid substrate is related to the fluidic pressure, p̃(x̃, z̃, t̃ ), by113

the Reynolds equation (see Ref. [29]),114

∂ h̃

∂ t̃
− 1

12μ̃

∂

∂ x̃

(
h̃3 ∂ p̃

∂ x̃

)
= −1

2

∂

∂ x̃
(h̃ũEOF), (6)

where the last term represents spatial variations in electro-osmotic flux h̃ũEOF, which drives the115

fluid−structure interaction.116

We neglect the weight and the inertia of the elastic sheet, γ = ρ̃mh̃ml̃2
m/T̃ t̃∗2 � 1, and focus117

on the case of a strongly prestretched elastic sheet with tension T̃ , assumed to be much larger118

than any internal tension T̃in ∼ (d̃∗/l̃m)2ẼY h̃m [32] formed in the sheet during the deflection, α =119

(d̃∗/l̃m)2ẼY h̃m/T̃ � 1.120

Upon application of the electric field, a pressure is induced on the elastic sheet by the nonuniform121

electro-osmotic flow as well as by direct traction by the Maxwell stresses. We assume that the122

permittivity of the elastic sheet and air are negligible compared to that of the fluid and therefore123

neglect their contributions to the Maxwell stress, accounting only for a dielectric contribution of the124

fluid. Based on these assumptions, and under the assumption of small slopes, |∂ d̃/∂ x̃| ∼ d̃∗/l̃m � 1,125

the pressure in the fluid p̃(x̃, z̃, t̃ ) can be expressed by a combination of elastic bending and tension126

stresses, and Maxwell stresses and the hydrostatic pressure [32–34],127

p̃ = B̃
∂4d̃

∂ x̃4
− T̃

∂2d̃

∂ x̃2
+ ρ̃g̃(h̃0 + d̃ − z̃) − 1

2
ε̃Ẽ2, (7)

where B̃ = ẼY h̃3
m/12(1 − ν2) is the bending stiffness, wherein ẼY and h̃m are assumed to be128

constants, and the last term is an upward-directed dielectric contribution arising from the Maxwell129

stresses.130

Combining Eqs. (6) and (7) yields the nonlinear governing equation for the deformation131

∂ d̃

∂ t̃
− 1

12μ̃

∂

∂ x̃

[
h̃3

[
B̃

∂5d̃

∂ x̃5
− T̃

∂3d̃

∂ x̃3
+ ρ̃g̃

∂ d̃

∂ x̃
− ε̃Ẽ

∂Ẽ

∂ x̃

]]
= −1

2

∂

∂ x̃
(h̃ũEOF). (8)

Invoking current conservation and electroneutrality in the bulk fluid yields ∂[h̃(x̃, t̃ )Ẽ (x̃, t̃ )]/∂ x̃ = 0132

(see Appendix A) and thus the last term on the left-hand side of Eq. (8) can be expressed as133

∂

∂ x̃

(
h̃3Ẽ

∂Ẽ

∂ x̃

)
= ∂

∂ x̃

[
h̃2Ẽ

(
−Ẽ

∂ h̃

∂ x̃

)]
= − ∂

∂ x̃

(
h̃2Ẽ2 ∂ h̃

∂ x̃

)
= −Ẽ2

0 F̃ (t̃ )2 ∂2d̃

∂ x̃2
, (9)

where the last equality stems from Eq. (5). Using Eqs. (4), (5) and (9), (8) takes the form134

∂ d̃

∂ t̃
− 1

12μ̃

∂

∂ x̃

[
h̃3

(
B̃

∂5d̃

∂ x̃5
− T̃

∂3d̃

∂ x̃3
+ ρ̃g̃

∂ d̃

∂ x̃

)]
− ε̃Ẽ2

0 F̃ (t̃ )2

12μ̃

∂2d̃

∂ x̃2
= ε̃Ẽ0F̃ (t̃ )

2μ̃

d ζ̃ (x̃)

dx̃
. (10)

Equation (10) is a nonlinear viscous−elastic governing equation, which accounts for bending,135

tension, gravitational and dielectric effects and describes the deformation field due to nonuniform136

EOF, acting either in a constant current or a constant voltage actuation mode. In addition, Eq. (10)137

clearly indicates that the driving mechanism for viscous−elastic interaction is nonuniform EOF due138
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to heterogeneous ζ -potential distribution. This is in contrast to the study of Mukherjee et al. [18], 139

which considered the relaxation of an initially deformed microchannel under a uniform ζ potential. 140

The governing equation (10) holds only for h̃ > h̃r . In regions where h̃ = h̃r , additional contact 141

forces come into play, preventing penetration of the elastic sheet onto the surface, and Eq. (10) is 142

no longer valid. Since these forces are not a priori known, we simply apply a kinematic condition 143

∂ d̃/∂ t̃ = 0 in these regions. We emphasize that for the purpose of calculating the pressure, Eq. (7) 144

can be used only in regions where the elastic sheet is free of contact with the surface, whereas 145

Eq. (6) can be used uniformly everywhere, once the deformation field is obtained. 146

B. Scaling analysis and nondimensionalization 147

Scaling by the characteristic dimensions, we introduce the nondimensional variables 148

(x, z) =
(

x̃

l̃m
,

z̃

h̃0

)
, (u,w) =

( ũ

ũ∗ ,
w̃

w̃∗
)
, p = p̃

p̃∗ , t = t̃

t̃∗ , d = d̃

d̃∗ , h = h̃

h̃0
, (11)

where the characteristic velocity in the x̂ direction, ũ∗, is given by the Helmholtz−Smoluchowski 149

slip condition as ũ∗ = −ε̃ζ̃ ∗|Ẽ0|/μ̃, wherein ζ̃ ∗ is the characteristic negative value of the ζ poten- 150

tial, so that ũ∗ is positive. From order-of-magnitude analysis of the continuity and x̃-component 151

momentum equations, given in Eq. (2), we obtain w̃∗ = εũ∗ and p̃∗ = 12μ̃ũ∗/ε2 l̃m. We note that 152

as the fluid motion is driven by EOF through the electro-osmotic slip velocity, the characteristic 153

pressure is independent of the viscosity, p̃∗ = −12ε̃ζ̃ ∗|Ẽ0|/ε2 l̃m [35]. 154

Since the deformations we are interested in here are on the order of the initial fluid thickness, 155

it is convenient to scale the deformation by h̃0 (d̃∗ = h̃0), so that the fluid layer thickness h can be 156

expressed as h = 1 + d . 157

In this study, our main focus is on a tension-dominant regime, and therefore the appropriate 158

scaling for the viscous−elastic timescale is based on tension and is obtained by balancing the first 159

and the second term on the left-hand side of Eq. (8), yielding 160

t̃∗ = 12μ̃l̃4
m

T̃ h̃3
0

= 12μ̃l̃m
ε3T̃

. (12)

It is worth noting that analogous expressions for a viscous−elastic timescale were previously 161

obtained by Elbaz and Gat [36] for the case of viscous fluid flow in an elastic cylinder and by 162

Martínez-Calvo et al. [25] for the case of a start-up flow through a deformable microchannel. 163

C. Viscous−elastic governing equations for constant current and constant voltage actuation modes 164

Substituting Eqs. (11) and (12) into Eq. (10), we obtain the nondimensional viscous−elastic 165

governing equation for the deformation 166

∂d

∂t
− ∂

∂x

[
(1 + d )3

(
B ∂5d

∂x5
− ∂3d

∂x3
+ G ∂d

∂x

)]
− ϕE2

EOFF (t )2 ∂2d

∂x2
= −1

2
EEOFF (t )

dζ (x)

dx
, (13)

where we have introduced the function F (t ), 167

F (t ) =
{

1 Constant applied current,
1∫ 1

0 [1+d (x,t )]−1dx
Constant applied voltage, (14)

and the nondimensional parameter, which we refer as an elasto-electro-osmotic number EEOF, 168

EEOF = −12ε̃ζ̃ ∗Ẽ0 l̃3
m

T̃ h̃3
0

, (15)

indicating the relative contribution of electro-osmotic and elastic restoring forces to the deformation 169

of elastic sheet. We note that an elasto-electro-osmotic number can be either positive or negative due 170
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to the sign of Ẽ0 and is similar to the capillary number encountered in free-surface thin-film flows171

[1].172

Three additional positive nondimensional parameters appear in Eq. (13). The first two param-173

eters, B and G, determine the relative importance of bending and gravity versus tension forces,174

respectively, and are defined as175

B = Bending

Tension
= B̃

T̃ l̃2
m

and G = Gravity

Tension
= ρ̃g̃l̃2

m

T̃
. (16)

The last nondimensional parameter ϕ appearing in Eq. (13) is defined as [28]176

ϕ = T̃ h̃5
0

144ε̃ζ̃ ∗2 l̃4
m

, (17)

and is independent of the applied electric field in contrast to EEOF. We note that the product ϕEEOF,177

given by −Ẽ0h̃2
0/(12ζ̃ ∗ l̃m), is a nondimensional parameter that represents the ratio of the dielectric178

to electro-osmotic effects.179

Table II lists the physical parameters for a typical microfluidic configuration with h̃0 = 100 μm180

and l̃m = 5 mm, showing that ϕ is of O(10−3–10−2). Moreover, since ϕ and EEOF scale as (h̃0/l̃m)4
181

and (h̃0/l̃m)−3, ϕ can attain much smaller values for more shallow typical configurations, while182

keeping ϕEEOF � 1, corresponding to the negligible contribution of the dielectric forces. Therefore,183

in this work, we restrict our analysis to the case of ϕ � 1 (more strictly speaking ϕ = 0) and184

neglect the contribution of the dielectric forces. We note that for very large electric fields, the185

dielectric contribution becomes apparent and its effect can not be neglected in the analysis. Further186

investigation would be required to access the effect of this contribution on the interfacial instability.187

We consider the following boundary conditions at the edges of the elastic sheet:188

d = 0,
∂2d

∂x2
= 0,

∂4d

∂x4
= 0 at x = 0, 1, (18)

and the initial condition d (x, t = 0) = 0. The first two conditions correspond to no deflection and189

no moment at the boundaries, whereas the last condition is obtained from Eq. (7) by assuming the190

fluidic pressure has a zero gauge value at the boundaries, p(x = 0, 1, z = 1, t ) = 0.191

The corresponding flow field can be described using the stream function ψ , given by192

ψ (x, z, t ) = 6
∂ p

∂x
z2

(
z

3
− h

2

)
+ sgn(EEOF)

z

h

(
1 − z

2h

)
F (t )ζ (x), (19)

and related to the velocity field through ũ = (∂ψ/∂z,−∂ψ/∂x). For h > hr , the pressure gradient193

∂ p/∂x can be calculated either using Eq. (6) or Eq. (7), whereas when the film thickness reduces to194

h = hr , the elastic balance Eq. (7) is no longer valid and ∂ p/∂x is obtained from Eq. (6).195

For completeness, we here provide a list of the nondimensional numbers used in the problem,196

ε = h̃0

l̃m
, εRe = − ρ̃ε̃ζ̃ ∗|Ẽ0|h̃2

0

l̃mμ̃2
, γ =

(
h̃0

l̃m

)6
ρ̃mh̃mT̃

144μ̃2
, α =

(
h̃0

l̃m

)2
ẼY h̃m

T̃
, ϕ= T̃ h̃5

0

144ε̃ζ̃ ∗2 l̃4
m

,

(20a)

B = B̃

T̃ l̃2
m

, G = ρ̃g̃l̃2
m

T̃
, EEOF = −12ε̃ζ̃ ∗Ẽ0 l̃3

m

T̃ h̃3
0

, (20b)

where the parameters in Eq. (20a) correspond to the shallowness of the fluid layer as well as the197

relative importance of the fluid inertia, the solid inertia, the internal tension and the dielectric198

contribution, wherein our assumptions also require ε � 1, εRe � 1, γ � 1, α � 1, and ϕ � 1.199

The nondimensional numbers appearing in Eq. (20b) determine the relative importance of bending200

and gravity as well as the relative magnitude of electro-osmotic forcing.201
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In this work, we examine the evolution of the deformation field and the interfacial instability, 202

using a particular case of a spatially nonuniform cosine ζ -potential distribution as a test case, 203

ζ (x) = 2 cos(kπx), (21)

and explore the effect of the wave number k on the resulting deformation and the onset of instability. 204

III. LINEAR STABILITY ANALYSIS FOR THE CASE OF CONSTANT CURRENT 205

We here focus on the case of a constant current actuation mode [Eq. (13) with F (t ) = 1] 206

and examine the linear stability of the corresponding steady-state solutions. We consider small 207

perturbations of the sheet from its equilibrium deflection dss(x) by letting 208

d (x, t ) = dss(x) + εs f (x)eσ t , (22)

where f (x)eσ t is the disturbance of the deformation from its steady state, σ is the growth rate of 209

the perturbation and εs � 1. Substituting Eq. (22) into Eq. (13), at the leading order we obtain the 210

equation for steady-state deformation, 211

d

dx

[
(1 + dss)3

(
B d5dss

dx5
− d3dss

dx3
+ G ddss

dx

)]
= 1

2
EEOF

dζ (x)

dx
. (23)

At the first order in εs, we find that the eigenfunction f (x) satisfies the eigenvalue problem, 212

d

dx

[
(1 + dss)3

(
B d5 f

dx5
− d3 f

dx3
+ G df

dx

)
+ 3(1 + dss)2

(
B d5dss

dx5
− d3dss

dx3
+ G ddss

dx

)
f

]
= σ f ,

(24)
from which the growth rate σ of the perturbation, being the eigenvalue, can be evaluated. 213

In the following sections we determine the steady-state deformation dss(x) and the corresponding 214

eigenfunctions f with eigenvalues σ by solving numerically the steady-state boundary value prob- 215

lem Eq. (23) and the corresponding eigenvalue problem (24) subjected to the boundary conditions 216

Eq. (18). Additional details of the numerical method are provided in Appendix B. 217

Gravity-dominant regime 218

In this section we consider a gravity-dominant regime, where the hydrostatic pressure dominates 219

over the tension and bending stresses, and obtain an analytical expression for the threshold elasto- 220

electro-osmotic number, EEOF,CR, corresponding to the growth rate of σ = 0 which determines 221

neutral stability. 222

Assuming that the elastic bending is small compared to the tension, G � 1 � B, we first neglect 223

both bending and tension terms in Eq. (23) and obtain 224

G d

dx

[
(1 + dss,G)3 ddss,G

dx

]
= 1

2
EEOF

dζ (x)

dx
for G � 1 � B, (25)

subjected to the boundary conditions 225

dss,G = 0 at x = 0, 1, (26)

where the subscript G denotes the solution obtained solely from the gravitational contribution. For 226

the case of a cosine ζ -potential distribution Eq. (21), a closed-form analytical solution of Eqs. (25) 227

and (26) for the steady-state deformation is given by 228

dss,G(x) =
[

4

kπ

EEOF

G sin(kπx) + 1

]1/4

− 1 for G � 1 � B. (27)

We note that all other roots are not physically relevant (one solution gives always negative film 229

thickness, while the other two are complex). It follows from Eq. (27) that a solution exists provided 230
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FIG. 2. Comparison between asymptotic and numerical results in the case of a gravity-dominant regime.
(a) The shape of the steady-state deformation along the x̂ axis for several values of EEOF. Solid lines represent
the asymptotic solution Eq. (27) in the case of pure hydrostatic stress, whereas dashed lines represent the
numerical solution which takes into account both tension and hydrostatic terms. (b) The growth rate σ as a
function of EEOF/|EEOF,CR,G|, obtained from a linear stability analysis by solving Eq. (24). Gray dots correspond
to the pure gravitational contribution, whereas black dots correspond to the case when the tension contribution
is included. All calculations were performed using k = 1, B = 0, G = 100, and EEOF,CR,G = −25π .

that231

EEOF � −kπG
4

, (28)

and thus the threshold value of the elasto-electro-osmotic number is232

EEOF,CR,G = −kπG
4

for G � 1 � B. (29)

Each such critical elasto-electro-osmotic number, EEOF,CR, corresponds also to a maximum defor-233

mation, dmax,CR, beyond which the system becomes unstable. Here, dmax,CR = −1 for G � 1 � B.234

As expected, since we have neglected the highest derivatives in Eq. (23), the solution Eq. (27)235

cannot satisfy all boundary conditions along x = 0 or x = 1. To explore the effect of neglecting the236

tension term on the deformation and the onset of instability, we keep both tension and hydrostatic237

terms and solve numerically Eq. (23) with B = 0 and k = 1, subjected to the first four boundary238

conditions in Eq. (18).239

Figure 2(a) presents the steady-state deformation along the x̂ axis for various values of EEOF,240

with G = 100. Solid lines represent the closed-form asymptotic solution Eq. (27), whereas dashed241

lines represent the numerical solution which takes into account both tension and hydrostatic terms.242

Similar to the results shown in the study of Tan et al. [37] on steady thermocapillary flows driven by243

nonuniform heating, in the case of pure hydrostatic stress there is a cusp at d (1/2) = dmax,CR = −1244

in the shape of the elastic sheet for EEOF = EEOF,CR,G that disappears when the external tension245

is included. Furthermore, accounting for tension results in a smoothing effect on the shape and246

in a reduction of deformation magnitude. Figure 2(b) presents the growth rate σ as a function of247

EEOF/|EEOF,CR,G| for both cases, and clearly indicates that the steady-state deformations shown in248

Fig. 2(a) are stable, since the negative growth rate tends to zero only as EEOF approaches EEOF,CR,G,249

given by Eq. (29). As can be inferred from the results of Fig. 2, while neglecting tension in the250

gravity-dominant regime results in an overestimated maximum deformation, it accurately predicts251

the threshold value of the elasto-electro-osmotic number at which the system is at neutral stability.252

In Appendix C, we provide the variation of the growth rate σ with EEOF for higher values of253

wave number k in a tension-dominant regime. We show that for k � 2 the growth rate approaches254

zero both for positive and negative values of EEOF, implying that the instability will occur regardless255

of the direction of the applied electric field. We also present and discuss the variation of the growth256
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FIG. 3. The effect of gravity on the onset of the instability of a prestretched elastic sheet in a constant
current actuation mode. [(a),(b)] The magnitude of the threshold elasto-electro-osmotic number EEOF,CR and
the corresponding maximum deformation dmax,CR as a function of G. Dots represent the numerical results
including both tension and hydrostatic contributions. Gray line represents the asymptotic solution Eq. (29) for
G � 1 and black line represents the asymptotic solution Eq. (30) for a wide range of G values. For G � 1, the
value of |EEOF,CR| is independent of G, while for G � 1 the value of |EEOF,CR| scales linearly with G, as given
by the asymptotic limit Eq. (30). All calculations were performed using k = 1 and B = 0.

rate σ with k2 for several values of EEOF, showing that σ approaches a constant value of −π4 as k 257

increases regardless of the value of EEOF. 258

Figure 3(a) presents the magnitude of the threshold elasto-electro-osmotic number EEOF,CR 259

required to initiate the instability, as a function of G, taking into account both tension and hy- 260

drostatic contributions. Performing scaling analysis of Eq. (23) with x ∼ 1 and dss = O(1), we 261

obtain that in this case, the threshold elasto-electro-osmotic number scales as EEOF,CR ∼ a1 + a2G, 262

where a1 and a2 are constants. Using the asymptotic limits G � 1 and G � 1, we determine the 263

coefficients a1 and a2 for the case of k = 1. For G � 1, numerical results show that the threshold 264

elasto-electro-osmotic number EEOF,CR is almost independent of G and thus we solve Eq. (23) 265

with B = G = 0 and obtain EEOF,CR = a1 = −6.51. On the other hand, for G � 1 the threshold 266

elasto-electro-osmotic number scales linearly with G and is accurately predicted by the asymptotic 267

solution Eq. (29), i.e., a2 = −πG/4, illustrated in Fig. 3(a) as a gray solid line. Therefore, the 268

threshold elasto-electro-osmotic number EEOF,CR scales as 269

EEOF,CR = −6.51 − πG/4, (30)

represented in Fig. 3(a) by a solid black line, showing good agreement with numerical results (black 270

dots). 271

Figure 3(b) presents the corresponding critical maximum deformation dmax,CR as a function of 272

G. Comparing the results of the Fig. 3(b) to the pure hydrostatic case shows that tension yields a 273

reduction of the threshold value of maximum deformation for the onset of instability. The critical 274

maximum deformation dmax,CR attains approximately a constant value up to G = O(1) and then for 275

G > 1 monotonically increases with G throughout the investigated range. 276

IV. DYNAMIC SIMULATIONS 277

To investigate the viscous−elastic dynamics and the spatiotemporal development of the insta- 278

bility, we solve numerically the nonlinear evolution equation (13) using finite differences. Further 279

details of the numerical procedure are presented in Appendix B. In this section, we focus on the case 280

where the established electro-osmotic flow drives the fluid from the center of the system outward, 281

corresponding to a ζ -potential distribution described by Eq. (21) with k = 1. In all numerical 282

simulations, hereafter we set hr = 10−2. 283
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FIG. 4. Comparison between the results of a dynamic numerical simulation for constant current and

constant voltage actuation modes in a tension-dominant regime. [(a),(b)] The time evolution of the maximum
deformation, obtained at the center of the membrane, for several values of EEOF. [(c),(d)] The maximum
deformation at steady state as a function of EEOF. Black dots represent the state-state solution of the dynamic
simulation Eq. (13), and gray dots represent the solution of the state-state boundary value problem Eq. (23).
[(e),(f)] The shape of the steady-state deformation along the x̂ axis, for several values of EEOF. Panels on the
left correspond to the case of a constant applied current and panels on the right correspond to the case of a
constant applied voltage. All calculations were performed using B = G = 0, k = 1, and hr = 10−2.

A. Deformations due to constant current and constant voltage actuation modes284

In Fig. 4 we show the deformation resulting either from a constant current [Figs. 4(a), 4(c),285

and 4(e)] or a constant voltage [Figs. 4(b), 4(d), and 4(f)] actuation mode in a tension-dominant286

regime, with B = G = 0 and k = 1. Figures 4(a) and 4(b) present the evolution of the maximum287

deformation as a function of time, for several values of EEOF. Figures 4(c) and 4(d) present the288

associated steady-state deformation as a function of EEOF, indicating a threshold value for instability.289

As a validation of the dynamic numerical solver, we compared the solution of the dynamic numerical290

simulation Eq. (13) (black dots) with the solution of the state-state boundary value problem Eq. (23)291

(gray dots), showing very good agreement. Importantly, the qualitative behavior for the maximum292

deformation is similar to the one predicted using a plate−spring model [28]. However, the present293

model allows for the first time to observe the spatial behavior of the elastic sheet as it approaches,294

and finally contacts the bottom surface.295

Figures 4(e) and 4(f) present the shape of the steady-state deformation along the x̂ axis for296

several values of EEOF. The numerical analysis reveals several differences between the two actuation297

modes. Firstly, the critical maximum deformation dmax,CR, below which the system is unstable, as298

well as the corresponding magnitude of threshold value EEOF,CR are smaller for a constant current299

(dmax,CR = −0.44; EEOF,CR = −6.51) than for a constant voltage (dmax,CR = −0.57; EEOF,CR =300

−10.1). Secondly, we observe that the part of the elastic sheet where h = hr , which we denote by �x301

and refer as the contact width, is significantly larger for the case of a constant current as compared302
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FIG. 5. The effect of the elasto-electro-osmotic number on the transient behavior and the magnitude of the
contact width �x. (a) The time evolution of the deformation field for EEOF = −50 in the case of a constant
applied voltage. In total, 10 profiles at equally spaced time steps between t = 0 and a steady state at t = 0.058
are shown. (b) The contact width �x, representing the part of the elastic sheet where h = hr , as a function of
|EEOF|. All calculations were performed using G = B = 0, k = 1, and hr = 10−2.

to the case of a constant voltage. These differences stem from the source term in Eqs. (13) and (14), 303

which remains constant for the case of applied current, but deceases as the elastic sheet descends 304

for the case of applied voltage. In contrast to the case of a constant voltage where the pulling effects 305

of EOF and restoring effects of elasticity weaken as h decreases, being nonlinearly coupled through 306

F , in the case of a constant current the electro-osmotic forcing remains constant, while the restoring 307

effects of elasticity decrease with h. Therefore, for the case of a constant current, the electro-osmotic 308

driving force overcomes the restoring effects of elasticity at smaller absolute values of EEOF,CR and 309

dmax,CR, thus triggering an instability. This means that triggering the instability in the case of a 310

constant voltage requires a comparatively higher initial electric field, which will then decrease due 311

to the increase in electric resistance of the configuration as the elastic sheet is pulled downward. 312

B. Investigation of contact width �x 313

To highlight the effect of the elasto-electro-osmotic number on the transient behavior and the 314

magnitude of the contact width, �x, we consider for simplicity the case of a strongly prestretched 315

elastic membrane (B = G = 0), actuated by a constant voltage, and solve numerically the governing 316

Eq. (13) for a wide range of EEOF values. 317

As an illustrative example, Fig. 5(a) presents the time evolution of the deformation profile for 318

EEOF = −50, showing the dynamic nature of �x. After the onset of instability, as the film thickness 319

reduces to h = hr , the contact width �x increases until the system reaches a steady state, where 320

the electro-osmotic forcing is balanced by the restoring effects of elasticity as well as the additional 321

contact forces that come into play. Figure 5(b) presents the contact width �x as a function of |EEOF|, 322

above the threshold value EEOF,CR = −10.1. As expected, the contact width �x monotonically 323

increases with |EEOF|, yet this dependence weakens as |EEOF| increases. 324

C. Hysteresis for the onset of instability 325

In the previous sections we showed the existence of the onset of an interfacial fluid−elastic 326

instability above a certain threshold value of |EEOF,CR|. In addition to instability, the nonlinearity of 327

the system that arises from the inverse dependence of the EOF force on the film thickness, results 328

in hysteresis. In this section, we show that the transition between stable and unstable states may 329

therefore occur at different values of EEOF,CR depending on the current state of the elastic sheet. For 330

example, Fig. 6 illustrates that after the onset of instability, the elastic sheet may remain adhered to 331

the floor after a decrease of electric field up to a different critical value of |EEOF,CR|. Figures 6(a) 332
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(d)

FIG. 6. Hysteresis for the onset of instability. [(a),(b)] The maximum deformation dmax at steady state
as a function of EEOF for a constant current (a) and a constant voltage (b) actuation modes. [(c),(d)] The
magnitude of the threshold elasto-electro-osmotic number EEOF,CR as a function of G for a constant current
(c) and a constant voltage (d) actuation modes, resulting from two different initial states of the system. Black
dots represent the results obtained from an initially flat elastic sheet and gray dots represent the results obtained
from an initially deformed elastic sheet which adhered to the floor, corresponding to dmax = −0.99. Black
dashed lines in panels (a) and (b) represent unstable equilibrium solutions obtained from Eq. (23). Black solid
lines in panels (c) and (d) represent the asymptotic solutions for G � 1, showing that in this case |EEOF,CR|
scales linearly with G. All calculations were performed using k = 1, B = G = 0, and hr = 10−2.

and 6(b) present the maximum deformation dmax at steady state as a function of EEOF for constant333

current and constant voltage actuation modes, showing a hysteresis loop. Black dots represent the334

maximum deformation of an initially flat elastic sheet which starts to descend in response to an335

applied electric field. As the electric field is increased above the threshold value, the instability336

occurs and the elastic sheet approaches the bottom floor. However, if at this point we decrease the337

magnitude of electric field, the elastic sheet does not ascend but remains in contact with the floor338

until significant reduction of the applied forcing is reached, below which the sheet rises and achieves339

a stable noncontacting steady-state position, represented by gray dots.340

To quantify the effect of gravity on the hysteresis, Figs. 6(c) and 6(d) present the magnitude of341

the threshold elasto-electro-osmotic number EEOF,CR as a function of G for constant current and342

constant voltage actuation modes, resulting from these two initial states of the system. For G � 1,343

the magnitude of EEOF,CR corresponding to the adhered initial state is smaller than the magnitude of344

EEOF,CR corresponding to the undeformed initial state, and both elasto-electro-osmotic numbers are345

independent of G. However, for G � 1 (G > 100), the two threshold elasto-electro-osmotic numbers346

become identical and, as expected, scale linearly with G.347

D. Effect of bending on the onset of instability348

In Secs. IV A–IV C, we neglected the influence of bending and gravitational effects and con-349

sidered a membrane (tension-dominant) regime with B = G = 0. Aiming to elucidate the effect of350

bending on the onset of instability, in this section we consider a finite value of B and obtain the351

threshold elasto-electro-osmotic number, EEOF,CR, and the corresponding deformation, dmax,CR, by352

solving numerically the sixth-order governing Eq. (13). We determine the threshold value EEOF,CR353

using a bisection method and restricting our resolution up to two decimal places. In addition, for354

simplicity, we eliminate the effect of gravity by setting G = 0.355

Figure 7(a) presents the magnitude of the threshold elasto-electro-osmotic number EEOF,CR as a356

function of B, for the cases of a constant current and a constant voltage. We note that the presented357

results and behavior for EEOF,CR, which correspond to tension-bending regime, are qualitatively358

similar to the results shown in Fig. 3(a) for tension-gravity regime. Similarly to the tension-gravity359

regime, performing a scaling analysis of Eq. (13) with x ∼ 1 and dss = O(1), we obtain that the360

threshold elasto-electro-osmotic number EEOF,CR scales as EEOF,CR ∼ a1 + a2B, where a1 and a2361

are constants. To find the value of a1, corresponding to the case of B � 1, we first neglected the362
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FIG. 7. The effect of bending on the onset of the instability of a prestretched elastic sheet. [(a),(b)]
The magnitude of the threshold elasto-electro-osmotic number EEOF,CR and the corresponding maximum
deformation dmax,CR as a function of B. Dots represent the numerical results, while gray and black lines
represent the asymptotic solutions Eqs. (31) and (32). Gray and black symbols correspond to constant current
and constant voltage actuation modes, respectively. All calculations were performed using k = 1 and G = 0.

bending and gravity contributions and then solved the resulting fourth-order nonlinear equation, 363

yielding a1 = −6.51 (constant current) and a1 = −10.15 (constant voltage). To determine the value 364

of a2, we considered the case of B � 1 and neglected the tension and gravity terms in Eq. (13), 365

obtaining that EEOF,CR � a2B. Solving the resulting sixth-order nonlinear equation with only a 366

bending contribution, yields a2 = −63.33 (constant current) and a2 = −97.15 (constant voltage), 367

and thus the threshold elasto-electro-osmotic number EEOF,CR scales as 368

EEOF,CR = −6.51 − 63.33B Constant applied current, (31)

EEOF,CR = −10.15 − 97.15B Constant applied voltage, (32)

represented in Fig. 7(a) by solid gray and black lines, respectively, and showing very good agree- 369

ment with the numerical results (gray and black dots). We chose to present the results on a log−log 370

plot in order to verify that there are no singularities as B approaches zero. 371

Figure 7(b) presents the corresponding critical maximum deformation dmax,CR as a function of B, 372

for a constant current (gray dots) and constant voltage (black dots) actuation modes. As opposed to 373

the tension-gravity regime considered in Sec. III, where for G > 1 dmax,CR monotonically increases 374

with G [see Fig. 3(b)], for the tension-bending regime considered here, the resulting threshold value 375

of maximum deformation dmax,CR attains approximately a constant value, indicating remarkably 376

weak dependence on B throughout the investigated range. 377

V. SYMMETRIC AND ASYMMETRIC DEFORMATION PATTERNS RESULTING 378

FROM A SYMMETRIC ACTUATION 379

Aiming to examine more complex deformation patterns, we consider the case of a strongly 380

prestretched elastic sheet (B = G = 0) actuated by a constant voltage, and focus on the ζ -potential 381

distribution Eq. (21) with k = 3. While for k = 1 the instability may occur only for negative values 382

of EEOF, for k = 3 (more generally for k � 2) the system may exhibit the instability both for positive 383

and negative values of EEOF, since negative pressures may still arise. 384

Figure 8 illustrates several distinct modes of instability depending on the sign and the magnitude 385

of EEOF (or an applied electric field), and indicates that the instability can result in an asymmetric 386

deformation, even for a symmetric actuation. Figures 8(a) and 8(b) present the time evolution of the 387

deformation field and the corresponding pressure distribution for EEOF = 32. For positive values 388

of EEOF, an initially sinusoidal-shaped deformation transits to first-mode deformation behavior, 389
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FIG. 8. Investigation of symmetric and asymmetric deformation patterns resulting from a symmetric actu-
ation with a constant applied voltage, in the case of a strongly prestretched elastic sheet. [(a),(c),(e)] The time
evolution of the deformation field for EEOF = 32 (a), EEOF=−200 (c), and EEOF = −275 (e). [(b),(d),(f)] The
time evolution of the corresponding pressure field. The insets in [(b),(d),(f)] present the pressure distribution in
the fluid, as the film thickness reduces to h = hr . All calculations were performed using k = 3 and B = G = 0.

illustrated in Fig. 5(a), due to a high negative gauge pressure that develops at the center of the390

system.391

On the other hand, for negative values of EEOF, corresponding to Figs. 8(c)–8(f), we observe392

a completely different deformation behavior after the onset of instability at EEOF,CR = −153.3 is393

reached. Clearly, while the baseline system is symmetric, our numerical results reveal that there394

is a range of EEOF, −254 � EEOF � −153.3, for which small nonuniformities in the system, here395

simulated by numeric round-off errors, result in more rapid growth of the instability on one side,396

which changes the system in such a way that prevents the collapse on the other side. We note that397

small changes in the grid result in inversion of the instability to the other side, indicating that our398

numerical solver is not biased in one direction. Figures 8(c) and 8(d) present the time evolution of399

the deformation field and the corresponding pressure distribution for EEOF = −200, showing that400

initially sinusoidal and symmetric deformation and pressure fields take an asymmetric form after the401

onset of instability. However, as illustrated in Figs. 8(e) and 8(f), as the magnitude of EEOF increases402

above the limiting value EEOF = −254, the system transitions back from the asymmetric behavior403

to the symmetric one, characterized by a symmetric deformation pattern with two contact regions404

where h = hr .405

Figures 9(a) and 9(b) present the resulting streamlines at steady state underneath the deformed406

elastic sheet for EEOF = −200 and EEOF = −275, obtained from Eq. (19) using Eq. (6). As opposed407

to the case of a symmetric deformation [Fig. 9(b)], where the corresponding volume flux vanishes408

at steady state, the case of an asymmetric deformation [Fig. 9(a)] is characterized by a negative net409

flux from right to left.410
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the narrow regions where h = hr = 10−2. Gray lines represent the streamlines and the arrows indicate the flow
direction. All calculations were performed using k = 3 and B = G = 0.

VI. FINITE-ELEMENT NUMERICAL VALIDATION 411

To validate the results of our theoretical model, we performed finite-element numerical sim- 412

ulations with the commercial software COMSOL Multiphysics (version 5.0, COMSOL AB, 413

Stockholm, Sweden). Complete details regarding the governing equations, boundary conditions, 414
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FIG. 10. Comparison of finite-element simulation results and theoretical model predictions for the case
of a constant applied voltage. (a) The maximum deformation at steady state as a function of EEOF. Black
dots represent the theoretical model predictions, whereas red crosses represent the results of the finite-element
simulation. (b) The time evolution of the maximum deformation, obtained at the center of the membrane, for
several values of EEOF. [(c),(d)] The time evolution of the deformation field for EEOF = −11 (c) and EEOF =
−12 (d). Gray solid lines represent the theoretical model predictions and black dashed lines represent the
finite-element simulation results. All calculations were performed using the values from Tables II and III, with
k = 1.
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domain discretization, and physical parameters employed in the finite-element numerical simula-415

tions are provided in Appendix D.416

Figure 10 presents a comparison of finite-element simulation results and theoretical model417

predictions for the case of a constant applied voltage. Figure 10(a) presents the maximum defor-418

mation at steady state as a function of EEOF, showing very good agreement between the theoretical419

predictions (black dots) and the finite-element simulations (red crosses). The threshold value of EEOF420

for the instability is also well predicted, with a value of EEOF,CR,Th = −11.2 versus EEOF,CR,FE =421

−11.3 for the theoretical model and finite-element simulations, respectively. Figure 10(b) presents422

the evolution of the maximum deformation as a function of time, for several values of EEOF.423

Figures 10(c) and 10(d) present the time evolution of the deformation profile, for EEOF = −11 and424

EEOF = −12, respectively. Gray solid lines represent the theoretical model predictions, whereas425

black dashed lines represent the finite-element simulation results. It follows from Figs. 10(b)–10(d)426

that at early times, corresponding to relatively small deformations, there is an excellent agreement427

between the theoretical model predictions and finite-element simulation results for all values of428

EEOF. Furthermore, far below or above the threshold value of EEOF, the theoretical model describes429

accurately the transient dynamics and provides a very good prediction for steady-state deformation.430

In the vicinity of EEOF,CR, due to the small difference in the threshold value of EEOF, we observe that431

our theoretical model slightly underpredicts the time required to an elastic sheet to collapse onto the432

floor.433

We also performed finite-element numerical simulations for the case of a constant applied434

current, showing similar agreement with the theoretical model, as presented in Fig. 12 of435

Appendix D.436

VII. CONCLUDING REMARKS437

In this work, we examined the interfacial instability of a thin film confined between a rigid438

surface and a prestretched elastic sheet, triggered by the pressure formed due to EOF. Applying439

the lubrication approximation to the flow field and modeling the elasticity by the Euler−Bernoulli440

beam approximation, we derived a nonlinear viscous−elastic governing equation describing the441

deformation of an elastic sheet, for constant current and constant voltage actuation modes. Our theo-442

retical analysis revealed that the instability is controlled by a nondimensional elasto-electro-osmotic443

number, representing the ratio of electro-osmotic to elastic forces. Through dynamic numerical444

simulations of the governing equation, we illustrated several distinct modes of instability depending445

on the electro-osmotic pattern. Furthermore, we demonstrated that this instability can result in an446

asymmetric deformation pattern, even for symmetric actuation. Finally, we performed finite-element447

simulations to validate the theoretical model predictions, showing very good agreement.448

The study of a lubricated elastic sheet can be viewed in analogy to the classical studies of free-449

surface thin films, yet some key differences must be highlighted. For example, while instability in450

thin-film problems ultimately results in rupture of the film, in the case of an elastic sheet, contact451

is reached with the surface yet the interface remains continuous. An underlying assumption of our452

modeling is that the membrane remains wetted even when in contact with the surface, similar to453

the prewetting film thickness introduced in the work of Lister et al. [9], yet the question of proper454

modeling of this contact region (e.g., the effect of van der Waals forces) remains open. Furthermore,455

the surface-membrane-liquid contact lines obtained in the case of an elastic instability (i.e., a solid-456

solid-liquid contact, in contrast to the solid-liquid-fluid contact in free surfaces) warrants additional457

investigation. Lastly, the use of an elastic sheet instead of a free surface opens up new degrees of458

freedom, such as spatial variation of the membrane thickness or elasticity, which when coupled with459

the instability mechanism may result in new and interesting dynamics.460

While throughout this work we neglected internal tension and considered a strongly prestretched461

elastic sheet, the model can also be extended to a nonprestretched elastic sheet. In such a case, based462

on preliminary simulations, we expect that due to nonlinear coupling between the internal tension463
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and the deflection, the instability will occur at much lower values of EEOF (based on the internal 464

tension), yet at much larger deformation as compared to the prestretched case. 465

Manipulation of fluids using EOF is currently widely encountered in microfluidic devices, that 466

are often fabricated from soft materials such as poly(dimethylsiloxane) (PDMS). The mechanism 467

illustrated in this work may pave the way for implementation of instability-based soft actuators for 468

lab-on-a-chip and soft-robotic applications. EOF is also extensively used as a driving mechanism 469

in nanochannels, where even relatively rigid walls (e.g., glass covers) may results in deformations 470

that are significant relative to the height of the channel. The presented results lay the theoretical 471

foundation for control of the EOF-driven instability in such devices, providing the key features 472

required to either induce or prevent the instability. 473
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APPENDIX A: DERIVATION OF THE EXPRESSION FOR ELECTRIC FIELD 480

In the lubrication approximation limit of a shallow configuration, ε � 1, the electric field Ẽ is 481

independent of z̃ [31], 482

Ẽ = Ẽ (x̃, t̃ )x̂ + O(ε) = −∂Ṽ

∂ x̃
x̂ + O(ε). (A1)

Invoking current conservation and assuming electroneutrality in the bulk fluid, the governing 483

equation for the electric field is [38] 484

∂

∂ x̃
[σ̃ w̃mh̃(x̃, t̃ )Ẽ (x̃, t̃ )] = 0, (A2)

where σ̃ [S m−1] is the fluid conductivity. Integrating Eq. (A2), the electric field Ẽ (x̃, t̃ ) can be 485

expressed in terms of applied current Ĩ (t̃ ) as 486

Ẽ (x̃, t̃ ) = Ĩ (t̃ )

σ̃ w̃m

1

h̃(x̃, t̃ )
. (A3)

For constant current sourcing Ĩ, since Ĩ/σ̃ w̃m = Ẽ (x̃, t̃ )h̃(x̃, t̃ ) = Ẽ0h̃0 = const, using Eq. (A3) the 487

electric field is given by 488

Ẽ (x̃, t̃ ) = Ẽ0
h̃0

h̃(x̃, t̃ )
. (A4)

For constant voltage sourcing Ṽ , integrating the relation Ẽ = −∂Ṽ /∂ x̃ and using Eq. (A3), we 489

obtain 490

Ṽ =
∫ l̃m

0
Ẽ (x̃, t̃ )dx̃ = Ĩ (t̃ )

σ̃ w̃m

∫ l̃m

0

1

h̃(x̃, t̃ )
dx̃. (A5)

Substituting the relation Ĩ (t )/σ̃ w̃m = Ẽ (x̃, t̃ )h̃(x̃, t̃ ) into Eq. (A5), we express the electric field in 491

terms of applied voltage Ṽ (or Ẽ0 l̃m), 492

Ẽ (x̃, t̃ ) = Ṽ
h̃(x̃, t̃ )

∫ l̃m
0 h̃(x̃, t̃ )−1dx̃

= Ẽ0 l̃m

h̃(x̃, t̃ )
∫ l̃m

0 h̃(x̃, t̃ )−1dx̃
. (A6)
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FIG. 11. (a) The variation of the growth rate σ with EEOF for wave numbers k = 1, 2, and 3, in a tension-
dominant regime. (b) The variation of the growth rate σ with k2 for EEOF = −5, −25, and −75, in a tension-
dominant regime. All calculations were performed using B = G = 0. Dotted lines are added to guide the eye.

APPENDIX B: NUMERICAL METHODS USED IN THE THEORETICAL MODEL493

The numerical results presented in this work were obtained using two numerical methods. In the494

first method, which was used to study the linear stability analysis (Sec. III), we solved numerically495

the steady-state boundary value problem Eq. (23) and the corresponding eigenvalue problem496

Eq. (24) subjected to the boundary conditions Eq. (18), using MATLAB’s Chebfun package.497

The Chebfun package uses a spectral expansion in Chebyshev polynomials and solves nonlinear498

ordinary differential equations as well as eigenvalue problems with various boundary conditions.499

We obtained the numerical solutions for dss(x) by beginning with very small values of EEOF and500

using the asymptotic solution in the limit of small elasto-electro-osmotic number as an initial guess.501

Solutions for other values of EEOF were then computed through numerical continuation.502

A second numerical method was employed to explore the dynamic behavior of the instability by503

solving the nonlinear evolution equation (13). To solve numerically the governing equation (13), we504

first discretized spatial derivatives in Eq. (13) using a second-order central difference approximation505

with uniform grid spacing, leading to a series of ordinary differential equations for the evolution506

of di(t ) = d (xi, t ). We then integrated forward in time the resulting set of ordinary differential507

equations using MATLAB’s routine ode15s.508

We cross-validated our boundary value (first method) and time-dependent (second method)509

numerical solvers in Figs. 4(a) and 4(b), showing very good agreement.510

APPENDIX C: VARIATION OF GROWTH RATE WITH EEOF AND k511

Figure 11(a) presents the growth rate σ as a function of EEOF for three values of the wave512

number, k, showing that for k = 1 the growth rate monotonically increases as |EEOF| increases and513

approaches zero only for a negative value of EEOF with EEOF,CR = −6.51. For k = 2, the growth514

rate varies symmetrically with regards to EEOF = 0, and achieves zero both for positive and negative515

values of EEOF, EEOF,CR = ±31.3. For k = 3, the growth rate also approaches zero both for positive516

and negative values of EEOF, though having nonsymmetric dependence on EEOF, similarly to the517

results shown in Fig. 8.518

Figure 11(b) presents the growth rate σ as a function of k2 for three values of EEOF, showing519

that, as expected, for all values of EEOF, σ approaches a constant value of −π4 as k increases. This520

behavior can be explained as follows: in the limit of k � 1 (kπ � 1) and EEOF = O(1), we expect521

the deformation to be small and thus can expand the deformation Eq. (22) terms of a small parameter522

EEOF/kπ � 1, as523

d (x, t ) = EEOF

kπ
[dss(x) + εs f (x)eσ t ] + O[(EEOF/kπ )2]. (C1)

004200-18



INTERFACIAL INSTABILITY OF THIN FILMS IN SOFT …

TABLE I. Summary of the boundary conditions used in finite-element numerical simulations. The electric
field Ẽ is related to the electric potential Ṽ through Ẽ = −∇̃Ṽ . n̂ is the unit vector normal to the fluid−elastic
interface and is defined as n̂ = (∂ h̃/∂ x̃, −1)/(1 + (∂ h̃/∂ x̃)2)1/2.

Boundary Velocity/Pressure Potential/Current Deformation

Left boundary: Hydrostatic pressure: Constant voltage: No deflection:

x̃ = 0 p̃ = ρ̃g̃(h̃0 − z̃) Ṽ = Ṽ = Ẽ0 l̃m d̃ = 0

Constant current

density:

j̃/σ̃ = −∂Ṽ /∂ x̃ = Ẽ0

Right boundary: Hydrostatic pressure: Electrical ground: No deflection:

x̃ = l̃m p̃ = ρ̃g̃(h̃0 − z̃) Ṽ = 0 d̃ = 0

Fluid−elastic interface: No-slip: Insulation: −
z̃ = h̃(x̃, t̃ ) = h̃0 + d̃ (x̃, t̃ ) ũ = 0 n̂ · ∇̃Ṽ = 0

Kinematic condition:

w̃ = ∂ d̃/∂ t̃

Bottom flat surface: Electro-osmotic slip: Insulation: −
z̃ = 0 ũEOF = ε̃ζ̃ (x̃)[∂Ṽ /∂ x̃]|z̃=0/μ̃ ∂Ṽ /∂ z̃ = 0

No-penetration:

w̃ = 0

TABLE II. Parameter values used in finite-element numerical simulations of viscous−elastic interaction
and interfacial instability induced by nonuniform EOF.

Physical property Notation Value Units

Initial fluid thickness h̃0 100 μm

Length of elastic sheet l̃m 5 mm

Thickness of elastic sheet h̃m 10 μm

Young’s modulus ẼY 1 MPa

Poisson’s ratio ν 0.49 –

Density of elastic sheet ρ̃m 965 kg m−3

Bending stiffness B̃ = ẼY h̃3
m/12(1 − ν2) 1.1 × 10−10 Pa m3

Characteristic internal tension T̃in = (h̃0/l̃m )2ẼY h̃m 4 × 10−3 Pa m

External tension T̃ 0.25 Pa m

Acceleration of gravity g̃ 9.81 m s−2

Density of fluid ρ̃ 103 kg m−3

Viscosity of fluid μ̃ 10−3 Pa s

Permittivity of fluid ε̃ 7.08 × 10−10 F m−1

ζ potential ζ̃ ∗ −70 mV

Initial electric field Ẽ0 40–400 V cm−1

Electro-osmotic slip velocity ũ∗ = −ε̃ζ̃ ∗|Ẽ0|/μ̃ 0.2–2 mm s−1

Characteristic pressure p̃∗ = −12ε̃ζ̃ ∗|Ẽ0|l̃m/h̃2
0 1.2–12 Pa

Characteristic timescale t̃∗ = 12μ̃l̃4
m/T̃ h̃3

0 30 s

004200-19



BOYKO, ILSSAR, BERCOVICI, AND GAT

-8 -7 -6 -5 -4 -3
-100

-80

-60

-40

-20

0

10 15 20
-100

-80

-60

-40

-20

0

0 5
t (s)

�

d
m

ax
(t

) 
(μ

m
)

�

�

d
m

ax
 (

μ
m

)

�

(a) (b)

-100

-80

-60

-40

-20

0

-100

-80

-60

-40

-20

0

x (mm)�0 1 2 3 4 50 1 2 3 4 5
x (mm)�

(c) (d)

d
(x

,t
) 

(μ
m

)

�

�
�

d
(x

,t
) 

(μ
m

)

�

�
�

FIG. 12. Comparison of finite-element simulation results and theoretical model predictions for the case of
a constant applied current. (a) The maximum deformation at steady state as a function of EEOF. Black dots
represent the theoretical model predictions, whereas red crosses represent the results of the finite-element
simulation. (b) The time evolution of the maximum deformation for several values of EEOF. [(c),(d)] The
time evolution of the deformation field for EEOF = −7 (c) and EEOF = −8 (d). Gray solid lines represent
the theoretical model predictions and black dashed lines represent the finite-element simulation results. All
calculations were performed using the values from Tables II and III, with k = 1.

Substituting Eq. (C1) into Eqs. (23) and (24) yields two uncoupled linear equations for the steady-524

state deformation dss(x),525

B d6dss

dx6
− d4dss

dx4
+ G dd2

ss

dx2
= −(kπ )2 sin(kπx), (C2)

and for the eigenvalue problem,526

B d6 f

dx6
− d4 f

dx4
+ G d2 f

dx2
= σ f , (C3)

subjected to the boundary conditions Eq. (18). The values of σ are eigenvalues of Eq. (C3) and527

are given as σ = −B(nπ )6 − (nπ )4 − G(nπ )2, where n = 1, 2, 3..., indicating that for the case of528

EEOF/kπ � 1 the perturbations always decay and the deformation is stable. For B = G = 0, σ529

simplifies to σ = −(nπ )4, with the maximum growth rate −π4 that is independent of EEOF and k530

when k � 1, consistent with the results shown in the Fig. 11(b).531

APPENDIX D: DETAILS OF FINITE-ELEMENT NUMERICAL SIMULATIONS532

We performed two-dimensional finite-element numerical simulations with the commercial soft-533

ware COMSOL Multiphysics (version 5.0, COMSOL AB, Stockholm, Sweden) by coupling the534

fluid−structure interaction module to electrostatics or electric currents modules.535
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TABLE III. Representative values of nondimensional numbers corresponding to the physical parameters in
Table II, showing that the assumptions of the theoretical model are well satisfied in this regime.

Nondimensional number Definition Value

Aspect ratio ε = h̃0/l̃m 2 × 10−2

Reduced Reynolds number εRe = −ρ̃ε̃ζ̃ ∗|Ẽ0|h̃2
0/l̃mμ̃2 4 × 10−4–4 × 10−3

Smallness of elastic sheet’s inertia γ = h̃6
0ρ̃mh̃mT̃ /144l̃6

mμ̃2 1.07 × 10−9

Internal-external tension ratio α = (h̃0/l̃m )2ẼY h̃m/T̃ 1.6 × 10−2

Smallness of dielectric effect ϕ = T̃ h̃5
0/144ε̃ζ̃ ∗2 l̃4

m 8 × 10−3

Bending-tension ratio B = B̃/T̃ l̃2
m 1.75 × 10−5

Gravity-tension ratio G = ρ̃g̃l̃2
m/T̃ 0.98

Elasto-electro-osmotic number EEOF = −12ε̃ζ̃ ∗Ẽ0 l̃3
m/(T̃ h̃3

0 ) 1.2–12

In the fluid−structure interaction module, we fully coupled the unsteady Stokes equations with 536

gravitational body force for the flow to the unsteady Navier equations for the elastic deformation. 537

Additionally, assuming constant permittivity and conductivity, we solved the Laplace equation for 538

the electric potential Ṽ in the time-varying domain using the electrostatics module (for constant 539

voltage) or electric currents module (for constant current). For the case of a constant voltage, we 540

applied a Dirichlet boundary condition, Ṽ = V = Ẽ0 l̃m, at x̃ = 0 and for the case of a constant 541

current, we prescribed a constant current density j̃ and applied a Neumann boundary condition, 542

j̃/σ̃ = Ẽ · x̂ = −∂Ṽ /∂ x̃ = Ẽ0, at x̃ = 0. The boundary conditions used in the finite-element simu- 543

lations are summarized in Table I. 544

We discretized the domain using a rectangular mesh with 150 uniformly distributed elements 545

in the longitudinal dimension and 33 uniformly distributed elements in the transverse dimension, 546

three of which reside inside the elastic sheet. We employed the third-order (cubic) discretization 547

for the flow field, the solid’s displacement field, and the electric potential, as well as the second- 548

order (quadratic) discretization for the pressure field, resulting in 240 704 degrees of freedom. 549

Additionally, we performed tests to assess the grid sensitivity at this resolution and established grid 550

independence. Finally, in all dynamic finite-element simulations, the solver was forced to take at 551

least a single time step every 0.1 s, and we stopped the unstable simulations when the film thickness 552

reduced to h = 1 μm. 553

Figure 12 presents the comparison of finite-element simulation results and theoretical model 554

predictions in the case of a constant applied current, showing very good agreement. Tables II and III 555

summarize the typical values of physical parameters and corresponding nondimensional numbers 556

used in our numerical finite-element simulations, indicating that the assumptions of the theoretical 557

model, i.e., ε � 1, εRe � 1, γ � 1, and α � 1, are well satisfied in this regime. 558
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