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a b s t r a c t

Inspired by Kapitza’s inverted pendulum, forced vibrations are suggested as a mechanism
to suppress aeroelastic flutter. We examine high-frequency small-amplitude vibrations
(e.g. by an internal oscillating mass) applied on a 2D airfoil, yielding forced periodic
excitation in the gyration-radius. Under such excitation, the aeroelastic dynamics involve
time-periodic system of two Hill-type ODEs. Harmonic balance is applied, along with
Floquet theory approach, in order to find approximated transition curves between stable
and unstable regions. The transition curves are obtained from the relevant Hill’s determi-
nants, and are validated by numerical calculations. Structural 3D effects are examined by
the aeroelastic strip approach for excitation in a section or the entire wing. The results
indicate that rapid small-amplitude oscillations can significantly increase the maximal
stable velocity in realistic flight conditions.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

This work analyzes the aeroelastic dynamics of a two-dimensional wing section under the effect of forced parametric
excitation. Specifically, rapid small-amplitude vibrations of the airfoil’s gyration-radius are examined as a mechanism to
modify the transition curves between stable and unstable regions, and thus suppress flutter instability. Flutter is a potentially
destructive phenomenon which occurs in flexible structures subjected to aerodynamic forces, such as aircraft (Garrick and
Reed III, 1981; Yang and Zhao, 1988), buildings (Kawai, 1998; Hübner et al., 2004) and bridges (Borri et al., 2002; Ostenfeld-
Rosenthal et al., 1992; Scanlan, 1978). Flutter occurs due to the interaction between the aerodynamic forces, structure
stiffness and inertial forces. As the flow speed increases, solid deformation and inertia due to aerodynamic forces increase
as well, and at a certain velocity, the structure will lose stability, which may result in structural failure. Loss-of-stability
commonly occurs due to deformation which diverges monotonically (known as divergence Weisshaar, 1980) or structural
oscillations with an increasing amplitude (known as flutter).

A significant part of modern aircraft design is focused on avoiding the onset of flutter instability. Current methods to
limit or eliminate flutter include: (a) Uncoupling the torsion and bending moment by changing the wing mass distribution
or stiffness (Hollowell and Dugundji, 1984; Kameyama and Fukunaga, 2007). (b) Energy dissipation by the use of a tuned-
mass–damper (Li, 2000; Gu et al., 1998; Kwon and Park, 2004), composed of a mass, spring and a viscous damper tuned
to a specific natural frequency. (c) Another technique applies active control on aerodynamic surfaces as active-flutter-
suppression (Karpel, 1982; Livne, 2017; Friedmann et al., 1997; Lhachemi et al., 2017; Reich et al., 2004; Xiang et al., 2014;
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Fig. 1. Illustration of the examined configuration. A rigid airfoil is connected to vertical displacement and torsion springs, and include a mechanismwhich
rapidly oscillates two small internal masses in frequency Ω over distance bε. In the presented configuration the masses move in opposite directions so that
the center-of-mass remains constant.

Li et al., 2012). This technique uses measurements taken on the vehicle in order to generate motion on the control surfaces
which applies aerodynamic forces in such a way that the overall forces suppress flutter.

The current work is inspired by previous studies on stabilization of an inverted pendulum by application of high-
frequency vertical vibrations on the pendulum’s pivot (Kapitza, 1951). This phenomenon, named after Pyotr Kapitza who
was the first to explain it successfully, is governed by a differential equation which contains parametric excitation (Hsu,
1963). The set of differential equations governing aeroelastic dynamics under periodic excitation of gyration-radius similarly
involve parametric excitation and resemble Hill’s and Mathieu’s equations (Magnus and Winkler, 2013). Thus, Floquet
theory (Kuchment, 2012) and harmonic balance (Mickens, 2010) are applied in order to analytically determine the effect
of high-frequency low-amplitude excitation on the transition curves between stable and unstable regions.

The structure of this work is as follows. In Section 2 problem definition and derivation of governing equations are
introduced. In Section 3 harmonic balance is applied to obtain transition curves between stable and unstable regions. In
Section 4 governing equations are solved numerically in order to validate the analytic results and determine the stability
regions. In Section 5 a simplified quasi-3D configuration is examined. In Section 6 concluding remarks are provided.

2. Problem definition and governing equations

The aeroelastic model used is a two-dimensional spring-supported rigid wing segment (Bisplinghoff et al., 1957),
containing a reactionless oscillating mass (ma). The mass ma may oscillate via connection to a cylinder rotating at constant
frequency, or by other methods, yielding a periodic change in the gyration-radius and the center-of-mass of the airfoil.
The examined configuration is illustrated in Fig. 1. The degrees-of-freedom of the examined airfoil are angular rotation α

and vertical displacement h̃. The chord length is 2b and other geometric parameters are measured from the center of the
chord. The distance between the chord middle to the elastic axis is ba. The distance between the elastic axis and the center-
of-mass, multiplied by the total mass, is Sα = (m + ma)bxα . The torsion spring stiffness is Kα and vertical displacement
spring stiffness is Kh. In addition, an internal mass oscillates at a forced frequency Ω and amplitude of bε. The distance
between the chord middle and the mechanism center-of-mass is P . The flight speed is V . The wing moment of inertia
around the elastic axis is Iα , the wing segment’s mass is m (excluding the oscillating mass ma) and ρ is air density. In
addition, we define reduced oscillation’s frequency k = ωb/V , dimensionless gyration radius rα = (Iα/(m + ma) b2)1/2,
density ratio µ = (m + ma) /πρb2, uncoupled natural bending frequency ωh = (Kh/(m + ma))1/2 and uncoupled natural
torsion frequency ωα = (Kα/Iα)1/2. Scaled heave is h = h̃/b. With the exception of frequencies, all parameters are defined
per-unit-length.

The kinetic T and potential U energies of the configuration are given by

T =
1
2
(m + ma)

˙̃h2
+

1
2
Iαα̇2

+ Sα
˙̃hα̇, (1a)

U =
1
2
Khh̃2

+
1
2
Kαα2 (1b)

and substituting (1) into the Lagrange’s equations (see chapter 3 in Fabien, 2008) yields the relevant system of equations of
motion

(m + ma)
¨̃h + Sαα̈ + Ṡαα̇ + Khh̃ = −L, (2a)

Sα
¨̃h + Iαα̈ + Ṡα

˙̃h + İαα̇ + Kαα = My, (2b)
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where L and My are aerodynamic lift and moment around the elastic axis. The governing equations (2) differ from the
standard model (Bisplinghoff et al., 1957) by the terms Ṡαα̇ and İαα̇, since both Iα and Sα are time-dependent due to the
forced oscillations. Substituting xα , rα , h, ωh and ωα , and applying standard Theodorsen’s theorem (Caracoglia and Jones,
2003) L = Lhh + Lḣḣ + Lαα + Lα̇α̇ and My = Mhh + Mḣḣ + Mαα + Mα̇α̇ for an unsteady aerodynamic model (described
in Appendix A) and under the assumptions of incompressible flow and small deformations, Eqs. (2) can be presented in the
form [

1 xα

xα r2α

]{
ḧ
α̈

}
+

([
0 ẋα

ẋα 2ṙαrα

]
+

bV
πµ

[
Lḣ Lα̇

−Mḣ −Mα̇

]){
ḣ
α̇

}
+([

ω2
h 0
0 r2αω2

α

]
+

V 2

πµ

[
Lh Lα

−Mh −Mα

]){
h
α

}
=

{
0
0

}
. (3)

While an oscillatingmass can generate a change in both center-of-mass and gyration-radius, for simplicity only a specific
case where two equal masses oscillate contrary around the mechanism’s center is examined hereafter. This results in a
constant center-of-mass and an oscillating gyration-radius, therefore rα is time dependent and ẋα = 0.

3. Harmonic balance analysis

Transition curves separate unstable regions from stable regions and involve bounded periodic solutions. According to
Floquet theory, Hill-type equations allow periodic solutions with the period T or 2T only if the associated parameters values
lie on a transition curve (Zounes and Rand, 1998). Harmonic balance is a technique for generating approximated analytic
expressions for the transition curves. Under this method, we define the bounded solution q(t), known to be periodic, by the
following Fourier series

q(t) =

{
h
α

}
=

∞∑
n=0

[{
an
bn

}
cos

(
nΩt
2

)
+

{
cn
dn

}
sin
(
nΩt
2

)]
. (4)

The periodic coefficients, obtained by substituting the excitation in the radius of gyration, are denoted by r2α(t) =

r2α0m/(m + ma) +
(
P2

+ ε2 cos2 (Ωt)
)
ma/(m + ma). Substituting r2α(t) into (3) yields[

1 xα

xα r2
α0m/(m+ma)+(P2+ε2 cos2(Ωt))ma/(m+ma)

]
q̈ +

([
0 0
0 −2Ωε2 cos (Ωt) sin (Ωt)ma/(m + ma)

]
+

bV
πµ

[
Lḣ Lα̇

−Mḣ −Mα̇

])
q̇ +

([
ω2

h 0
0 ω2

α(r
2
α0m/(m + ma) +

(
P2

+ ε2 cos2 (Ωt)
)
ma/(m + ma))

]
+

V 2

πµ

[
Lh Lα

−Mh −Mα

])
q =

{
0
0

}
. (5)

We continue to substitute (4) into (5) and utilize trigonometric relations to eliminate terms of forms such as sin (Ωt)
sin (nΩt/2) and sin (Ωt) cos (nΩt/2) in order to present (5) solely in terms of the orthogonal functions sin (nΩt/2) and
cos (nΩt/2). Thus, Eqs. (5) take the form of

∞∑
n=0
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nVLḣ
bπµ
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)}
= 0. (6a)
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and
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Since all time-dependent terms are of the form of the orthogonal functions sin (nΩt/2) and cos (nΩt/2), satisfying
equations (6a) and (6b) requires the sums of each set of terms multiplying sin (nΩt/2) or cos (nΩt/2) to separately equal
zero for each value of n. Thus, an infinite set of linear homogeneous equations for {an, bn, cn, dn} is obtained and could
be represented as a coefficients matrix. In order for q(t) to be a nontrivial solution of the system, the determinant of the
coefficient matrix, known as Hill’s infinite determinant (Magnus, 1955), must vanish. Equating the determinant to zero
establishes a functional relation between Ω and ε, which plots as a transition curve in the Ω − ε plane and represents the
stability threshold.

The analytic approximation presented in Fig. 2 was generated using symbolic calculations by MATHEMATICA R⃝ software
for a truncated Fourier series consisting of N = 12 terms (code is attached as supplementary material). For the presented
solution of (6a) and (6b), characteristic values of aircraft parameters were chosen as

µ = 100, a = 0.25, ωh = 0.8, ωα = 1, CLα = 2π, b = 1[m], (7a)

ma = 0.1m, P = 0.3, xα = 0, rα0 = 0.77. (7b)

Based on the standard V − g method (Bisplinghoff et al., 1957), the flutter speed VF and the relevant reduced oscillation
frequency k for configurations without excitation (Ω = 0, ε = 0) are calculated as

VF = 3.18[m/s], k = 0.279. (7c)

(Numerical calculations, presented in Section 4, yielded that the reduced oscillation frequency k is identical for both the
unexcited and excited configurations.)

Stability maps obtained by harmonic balance are presented in Fig. 2 for different flight conditions and parameters. The
harmonic balance analysis generates the transition curves separating between stable and unstable regions. Since the stability
or instability of each region is unknown, a point (set of Ω and ε) in each region is numerically checked. An example to this
process is given in Fig. 3. For all panels V = 1.1VF is selected in order to examine the effect of forced actuation on an initially
unstable configuration. In each panel a single parameter changes while the rest are kept at the default values prescribed in
(7a). All panels show amostly inverse proportion between ε andΩ required to obtain flutter suppression. Panel (a) presents
the case where all parameters are kept as default and the oscillating mass is varied toma ∈ [0.05, 0.1, 0.15] · m. The results
show that the efficiency of the actuationmechanism increasesmonotonicallywith the oscillatingmassma. Panel (b) presents
the case where xα = 0.1 and the distance between the elastic axis and the chord middle is set to be a ∈ [0.15, 0.25, 0.35]. A
single transition curve separating unstable region (1, U) and stable region (2, S) is obtained for all cases except for a = 0.35.
In this case, we get an additional transition curve defining the stable region (3, S) located within (2, S) and therefore only
represents inflection. Panel (c) presents the case where all parameters are kept as default and the flight velocity is varied to
V ∈ [1.1, 1.2, 1.3] · VF . In this case, the reduced oscillation’s frequency was calculated separately for each value of V . The
results show that the change in the flight velocity only slightly affects the Ω − ε transition curve. Panel (d) presents the case
where xα ∈ [−0.2, 0, 0.2]. The transition curve is similar to that of panel (b), where the additional transition curve marks a
small stable region (3, S) within unstable (1, U). In the next section, this stability map is validated by numerical solution of
the governing equations of motion.
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Fig. 2. Approximated transition curves calculated by harmonic balance (6). Stable regions are marked by S and unstable regions are marked by U . In each
panel all parameters were kept constant according with values defined by (7) at flight speed V = 1.1VF , except for the variation of a single parameter:
(a)-ma ∈ [0.05, 0.1, 0.15], (b)-a ∈ [0.15, 0.25, 0.35], (c)-V ∈ [1.1, 1.2, 1.3] · VF and (d)-xα ∈ [−0.2, 0, 0.2].

4. Numerical validation

Eqs. (5) were solved numerically using a standard commercially available code (MATLAB R⃝ numerical solver ODE45)
for various values of excitation parameters. Based on these calculations, an illustrative example of an airfoil in unstable
conditions, and stabilization by rapid forced oscillations, is presented in Fig. 3. The parameters used in the computations are
defined in (7a). Flutter speed of the unexcited configuration was calculated by a standard V − g method and is presented
in (7c). Flight speed is V = 1.1Vf . Thus, flutter instability is expected in the absence of stabilizing mechanisms, as indeed
evident in panel (a) presenting diverging heave h (blue dashed) and angle-of-attack α (red smooth). Panel (b) presents heave
h and angle-of-attack α for an airfoil actuated at frequencyΩ = 30 and amplitude ε = 0.1. The excitation clearly suppresses
the instability and the oscillations of both h andα decrease over time. Panels (c) and (d) present the time-derivatives of heave
ḣ and angle-of-attack α̇, for the unexcited and excited configurations, respectively. While the effect of rapid oscillations is
not directly visible in h or α, the time-derivatives clearly present the higher frequency associated with the forced rapid
excitation.

In order to validate the transition curves obtained by the harmonic balance analysis presented in Section 3, large numbers
of calculations (similar to the results presented in Fig. 3) were performed for various values of ε and Ω . In order to quantify
stability or instability of a specific case, we defined R as the ratio between the amplitude of h or α after 10 oscillation periods
and the initial amplitude at t = 0. Thus, R > 1 represents instability, R = 1 is a point on the transition curve and R < 1
represents stable configurations. (For example, in the configuration presented in Fig. 3b the amplitudes’ ratio equals to
R = 0.04 and hence flutter is suppressed.) Contour plots of R (based on h) as function of Ω and ε are presented in Fig. 4a.
Calculation of R based on α yields nearly identical results and is therefore omitted. The airfoil properties and flight conditions
used in the calculations were again set by (7a). The value of R is defined by gray-scale, where the blue line mark numerical
calculations yielding 0.95 < R < 1.05. The red lines mark the analytic transition curves obtained from harmonic balance
presented in Section 3. Good agreement between the numerical and analytic transition curves is presented, supporting and
validating the analytic results. In addition, in Fig. 4b we present the effect of a predefined values of excitation frequency
Ω and amplitude ε on the minimal flight speed yielding flutter instability Vf . A contour plot of minimal flutter speed is
presented in terms of Vf (ε, Ω)/Vf (0, 0), (where Vf (0, 0) is the flutter speed of the airfoil in the absence of any excitation).
The plot was obtained by calculation of stability for each pair of Ω and ε for various flight speeds, and interpolating the
minimal unstable flight speed. A significant increase in flutter speed of up to 3Vf (0, 0) is presented.
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Fig. 3. Numerical solution of (5) with the excitation set to Ω = 30 [Hz] and ε = 0.1. Panels (a) and (b) present α and h. Panels (c) and (d) present α̇ and ḣ.
Panels (a) and (c) present the system response for unstable flight conditions without actuation. Panels (b) and (d) present the system response at the same
flight conditions with the excitation applied, clearly achieving flutter suppression.

Fig. 4. Maps of the parameter R, representing stability of the configuration (R > 1 represents instability, R < 1 represents stable configurations). Panels (a)
presents stability regions as obtained from the numerical calculation in comparison to the analytic transition curve for two sets of parameters. In panel (a)
the distance between the elastic axis and the center-of-mass is 0 (xα = 0). Panel (b) presents the ratio between the minimal flutter speed with excitation
at prescribed values of (Ω, ε) and the minimal flutter speed of the unexcited system. Configuration parameters are defined by (7a).. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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5. Three-dimensional effects - strip theory approximation

In realistic wing structures it is more practical to implement a mechanism creating forced oscillations only on a specific
segment of the wing. In this section we examine the effect of the location of such partial actuation along the wing-span
on the amplitude and frequency needed to obtain stabilization. The quasi-3D elastic model used in this section includes an
additional degree-of-freedom: a bending angle θ defined in Fig. 5c, along with the previously used heave h and rotation α

degrees-of-freedom. The aerodynamic model applies the strip-theory-approximation (Yates, 1958), under which the wing-
span is divided into n elements and the known results from the 2D case are employed to calculate the lift and moment for
each wing segment.

In order to expand the configuration into a quasi-3D model we used a standard beam element formulation (Bathe and
Wilson, 1976, chapter 1), under the assumptions of small deformation, negligible in-plane-bending and axial deformation.
In the current calculation the wing is divided into n = 30 equal elements of length le = L/n (where L = 10[m] is the length
of the wing-span). The number of elements was chosen based on convergence analysis, presented in panel 5g. Each element
defines 6 degrees-of-freedom,

qi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

hi
θi
αi
hi+1
θi+1
αi+1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (8)

where i and i + 1 denote both edges of the element. Applying Lagrange’s equations (similarly to Section 2) the relevant
equations of motion for element i can be written in the form

[M]iq̈i + [C]iq̇i + [K ]iqi = [Q AD]i, (9)

(where the matrices [M]i, [C]i, [K ]i and [Q AD]i are defined in Appendix B, as well as additional details and coefficients used
the calculation).

Since each element is coupled to two adjacent elements, a systemof 3n equations governs the dynamics of thewing. These
equations are supplemented by boundary conditions at the clamped root of the airfoil ([h0(t), θ0(t), α0(t)] = [0, 0, 0]), and
zero forces and moments at the free-end. Actuation of a segment is obtained by setting rα to oscillate according to (7a). For
simplicity, the wingspan is divided into three equal segments: (1) root segment, (2) middle segment, (3) tip segment. This
division allows to compare the efficiency of an oscillationmechanism applied in four different configurations, (1)–(3) as well
a full wing actuation (4).

The equations were solved numerically for a range of values of ε and Ω (similarly to calculations in Section 4). Contour
plots of the R (calculated based on h) as function of ε and Ω are presented in Fig. 5. Numerically calculated transition lines
R ≈ 1 are marked by blue, light gray marks R > 1 (stable conditions), and dark gray marks R < 1 (unstable conditions).
Panels (a–d) present actuation of the root segment (a), middle segment (b), tip segment (c) and combined actuation of
all three segments (d). (See panel (e) for location of the three equal root, middle and tip segments). Panel (f) presents a
comparison between the numerical lower transition curves obtained in panels (a–d) and the transition curve obtained in
the 2D model.

Actuation of the root segment (panel a) is shown to yield a single transition line (similarly to the 2D results) with a
significant increase of the area of unstable conditions compared to the 2D results. Actuation of the middle segment (panel
b) reduces the lower unstable region compared with the root actuation case. However, in this case a second transition line
emerges, corresponding to a second unstable region bounding the stable region. For actuation of the tip, the lower unstable
region decreases further, while the area of upper unstable region increases. From panels (a–c), it is clear that actuation
of the tip is significantly more effective. Panel (d) presents full actuation of all segments, yielding minor improvement
over actuation of the tip segment only. From panel (f), the quasi-3D model with full actuation is shown to estimate lower
stabilization frequencies (compared with the 2D model) for small amplitudes, and higher frequencies in higher amplitudes.
Nonetheless, the 2D model and quasi-3D with full actuation model present similar transition lines.

6. Concluding remarks

This work examined rapid vibrations of radius of gyration as a mechanism to suppress flutter instability. Applying
harmonic balance analysis on a 2D aeroelastic airfoil, we computed the transition curves between stable and unstable regions
by the relevant Hill’s determinants. The results were verified by numerical calculations, and extended to include quasi-3D
structural effects. The analytic calculations are available as MATHEMATICA R⃝ code attached as supplementary material.

The presented numerical computations were made for characteristic aeroelastic values, indicating that such rapid
oscillations may be implemented in realistic configurations as a stabilization mechanism. In addition, stabilization by rapid
oscillations may be applied by the airfoil’s standard control mechanisms. This is specifically relevant to shape-morphing
airfoils, which are inherently flexible and able to dynamically change their properties (see Thill et al., 2008; Barbarino et al.,
2011 and references therein). Nonetheless, it is clear that additional considerations are needed to be taken into account in
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Fig. 5. Numerical calculations of a quasi-3D strip-theory-approximation model, using the same parameters from the 2D model (defined at (7)). Panels
(a–d) present R (R > 1 in stable conditions, R < 1 in unstable conditions) for actuation of the root segment (a), middle segment (b), tip segment (c)
and combined actuation of all three segments (d). Panel (e) presents illustration of the three segments used in the strip-theory-approximation. Panel (f)
presents comparison between the numerical transition curves obtained in panels (a–d) and the transition curve obtained in the 2Dmodel. Panel (g) presents
numerical convergence graph comparing h(tip) heave at the wing tip vs. n the number of elements used in the computation. The heave is scaled according
to its value at N → ∞.

order to apply this mechanism in a specific configuration. The main issues to consider are the wing’s inner volume assigned
to this mechanism, the feasibility of such actuators needed to generate appropriate oscillations and investigating effects of
structural damping.

Unlike the standard Kapitza problem, the proposed oscillatory stabilization mechanism modifies the external aerody-
namic excitation on the structure, which are modeled via a potential flow approximation. While potential flow models are
commonly and successfully used to describe such oscillatory aeroelastic dynamics, the effect of inaccuracies of the model
on the stability dynamics were not examined here, and would require further research. Finally, while this paper only studies
the effects of excitation in the gyration radius, oscillations of other parameters were examined by the authors. Similar
stabilization behavior was obtained by both radius of gyration and center of mass excitation. While rapid oscillation of any
other of the airfoil parameters will yield governing differential equations with oscillating coefficients, no stabilization was
found for any other actuation parameters except the center-of-mass and gyration-radius.

Appendix A. Theodorsen’s theorem

For completeness, the standard Theodorsen calculation used in Section 3 is presented, where

L = πρ
(
ḧ + V α̇ + baα̈

)
+ 2πρVbC (K )

[
ḣ + Vα + b

(
1
2

− a
)

α̇

]
(A.1)

M = πρb2
[
baḧ − Vb

(
1
2

− a
)

α̇ − b2
(
1
2

+ a2
)

α̈

]

+ 2πρVb2
(
1
2

+ a
)
C (k)

[
ḣ + Vα + b

(
1
2

− a
)

α̇

]
(A.2)

In order to simplify the equations we used the definitions used in Bisplinghoff (Bisplinghoff et al., 1957):

Lh = CLα

(
−

k2

2
− kG

)
(A.3)
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Mh = CLα

[
−

k2a
2

− k
(
1
2

− a
)
G
]

(A.4)

Lḣ = CLα F (A.5)

Mḣ = CLα

(
a +

1
2

)
F (A.6)

Lα = CLα

[
k2a
2

+ F − Gk
(
1
2

− a
)]

(A.7)

Mα = CLα

[
k2

2

(
1
8

+ a2
)

+ F
(
a +

1
2

)
+ kG

(
a2 −

1
4

)]
(A.8)

Lα̇ = CLα

[
1
2

+ F
(
1
2

− a
)]

(A.9)

Mα̇ = CLα

[
−

1
2

(
a −

1
2

)
+ F

(
a2 −

1
4

)
+

G
k

(
a +

1
2

)]
(A.10)

C(k) =
K1 (ik)

K0 (ik) + K1 (ik)
(A.11)

F = Real {C(k)} ,G = Imag {C(k)} (A.12)

Ki(ik)- Is the Bessel function with order i.

Appendix B. Coefficients of the strip theory approximation

For actuated elements (general case of actuation in both xα and rα is presented), the matrices in (9) are defined by

[Q AD]i = le

⎡⎣ −bLα̇ − Lḣ 0 −eLḣ −bLα̇ − Lḣ 0 −eLḣ
0 0 0 0 0 0

b2Mα̇ + bMḣ 0 beMḣ b2Mα̇ + bMḣ 0 beMḣ

⎤⎦ q̇i

+

⎡⎣ −bLα − Lh 0 −eLh −bLα − Lh 0 −eLh
0 0 0 0 0 0

b2Mα + bMh 0 beMh b2Mα + bMh 0 beMh

⎤⎦ qi (B.1)

[M]i =
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
le
2

xα 0 0 0

le
2

Iz
me

+
le
2

2 le
2
xα 0 0 0

xα

le
2
xα r2α 0 0 0

0 0 0 1 −
le
2

xα

0 0 0 −
le
2

Iz
me

+
le
2

2

−
le
2
xα

0 0 0 xα −
le
2
xα r2α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.2)



O. Peretz and A.D. Gat / Journal of Fluids and Structures 85 (2019) 138–148 147

[C]i =
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ẋα 0 0 0

0 0
le
2
ẋα 0 0 0

ẋα

le
2
ẋα ṙ2α 0 0 0

0 0 0 0 0 ẋα

0 0 0 0 0 −
le
2
ẋα

0 0 0 ẋα −
le
2
ẋα ṙ2α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B.3)

and

[K ]i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω2
h

le
2

ω2
h 0 −ω2

h
le
2

0

le
2

ω2
h

l2e
3

ω2
h 0 −

le
2

ω2
h

l2e
6

ω2
h 0

0 0 ω2
αr

2
α 0 0 −ω2

αr
2
α

−ω2
h −

le
2

ω2
h 0 ω2

h −
le
2

0

le
2

ω2
h

l2e
6

ω2
h 0 −

le
2

ω2
h

l2e
3

ω2
h 0

0 0 −ω2
αr

2
α 0 0 ω2

αr
2
α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B.4)

where rho = 1.125 [Kg/m3
] is air density,

m = π (µρ)b2L is the wing mass (excluding the mechanism),
ma = 0.1m is the mechanism mass,
me = m/n is the segment mass,

le = L/n, L = 10 [m] is the segment length,
e = 0.5 − a is the distance between the elastic axis and aerodynamic center,

Iz =
me
12 (l

2
e + t2) is the max chamber thickness (t ≈ 0.1(2b)).

All other relevant values are defined in (7a). In the case where an element is not actuated xα and r2α are both constant and
therefore ẋα = ṙα = 0.
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