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a b s t r a c t

We study steady-state oscillations of a thin viscous film bounded by two elastic sheets, excited

by traveling pressure waves over its upper surface. The fluid within the cell is bounded by

two asymmetric elastic sheets which are connected to a rigid surface via distributed springs.

The fluid is modeled by the unsteady thin film lubrication approximation and the sheets are

modeled by the linearized plate theory. Modal analysis yields the frequency response of the

configuration as a function of three parameters: the fluidic Womersley number and the ratio

of solid stress to viscous pressure for each of the sheets. These ratios, analogous to the Capil-

lary number, combine the effects of fluid viscosity and the sheets inertia, bending and tension.

The resonance frequencies of the configuration include the resonance frequency of the upper

sheet, the resonance frequency of both sheets, and a new resonance frequency related to the

interaction between the fluidic motion parallel to the elastic solids and the relative elastic

displacements. Near the resonance frequency of the upper sheet, the fluid pressure is identi-

cal in amplitude and phase to the external excitation. For configurations where both sheets

are near resonance, small changes in frequency yield significant modification of the fluidic

pressure. The amplitude ratio of the fluidic pressure to the external pressure is presented

vs. frequency for several characteristic solid and fluid properties, yielding a bandpass filter

behaviour. The results presented here suggest fluid embedded structures may be utilized as

protective surfaces and mechanical filters.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In this work we examine the frequency response of two parallel elastic sheets containing a thin liquid film. We focus on

physical regimes where viscous, elastic and inertial effects (of the fluid and solids) are of similar order of magnitude. The elastic

sheets are modeled by the linear plate theory and include both bending and tension effects, and may be connected to a rigid

surface via distributed springs.

Interaction of fluid viscosity with solid elasticity in geometries involving viscous film bounded by two parallel elastic plates

(commonly known as Hele-Shaw cells), or similar configurations, is relevant to various research subjects. Among these are

viscous peeling problems [1–5], fluid-driven crack propagation [6–8], gravity currents spreading under elastic sheets [9,10], and

wrinkling of lubricated sheets [11,12]. At the inviscid flow limit, elastic-inertial fluid-structure-interaction have been shown

to vary the solid structure resonance frequency. Initial work on the subject was pioneered by H. Lamb [13] who examined the

modified resonance frequencies of a clamped plate in contact with a water reservoir. This work has been extended by various
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Fig. 1. Illustration of the configuration and the Cartesian coordinate system. Both elastic sheets are parallel at rest to the x − y plane. pe(x, y, t) is the external propagating

pressure wave, 2h0 is the gap between the sheets at rest, d1 and d2 are the displacements of plate 1 and 2 in the z-direction, respectively.

researchers including [14–16]. Recent works on the dynamic response of elastic sheets interacting with inviscid laminar flows

include [17–19].

Various previous studies examined leveraging fluidic elements, contained within a solid structure, to increase struc-

tural rigidity and damping of external loads. Commonly used mechanisms include the tuned liquid column dampers (TLCD)

[20,21] and viscous damping devices (VDD), which were studied extensively [22,23]. Other approaches include utilizing shear-

thickening-fluids as a mechanism to improve shock-absorption for body armor applications [24–26], as well as combining a

lyophobic fluid with a porous matrix to create colloidal suspensions [27]. The current work follows the approach of our previous

study [28], examining an elastic Hele-Shaw configuration as a structural element. In Ref. [28], we studied the transient dynamics

of elastic Hele-Shaw Cells due to localized excitations, assuming rigid lower surface and neglecting elastic tension effects and

inertia in both the solid and fluid.

We here examine the frequency response of steady-state oscillations of two elastic plates containing a viscous film and

include inertial effects of both the fluid and solid regions. Specifically, we aim to obtain extrema of fluidic pressure and solid

displacements in terms of the excitation frequency and the mechanical properties of the system. The results of the current

research allow to compute, via Fourier transform, the effect of an internal viscous film on the response of elastic sheets to a

general external loading. This, in turn, enables optimizing the design of such solid-liquid configurations as protective layers,

via maximizing resistance to external shocks and oscillations. The structure of this paper is as follows: In section 2 we define

and scale the problem. In section 3 we obtain the phase and amplitude of traveling-wave solutions. In section 4 we present a

comprehensive parametric study of frequency response in terms of solid displacements and fluidic pressure for various configu-

rations. In section 5 we summarize and discuss the results presented in section 4, examine new resonance frequency related to

fluid motion parallel to the sheets (section 5.1), and illustrate realization of Hele-Shaw cells as mechanical filters or protective

surfaces (section 5.2). In section 6 we provide concluding remarks.

2. Problem formulation and scaling

We study steady-state oscillations of two parallel elastic sheets containing a thin liquid film. The fluid flow and solid displace-

ments are excited by an external pressure wave with prescribed frequency and wavelength, which may be readily generalized to

an arbitrary external forcing. The elastic sheets are modeled by the linear plate theory and include bending, tension, and inertial

effects.

The configuration and the Cartesian coordinate system (x∥, z) are defined in Fig. 1, ∥ subscript denotes two-dimensional

vectors in the x − y plane. The x − y plane is parallel and of equal distance to both plates at rest. The subscripts 1 and 2 denote

the upper and lower plates, respectively.

The fluidic properties are denoted by:

p, fluidic pressure,

(u∥,w), fluid velocity,

𝜌, fluid density,

and 𝜇, fluidic dynamic viscosity.

The geometric and physical properties of the elastic sheets are given by (where n = 1, 2 denote the upper and lower sheet

respectively):

2h0, the gap between the plates at rest,

sk , spring array stiffness,

sn , elastic sheet bending stiffness,

tn , sheet tension,

bn , sheet thickness,

mn, sheet mass-per-area,

and (d∥,n, dn), sheet displacement.
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We assume an incompressible flow-field, corresponding to the limit of negligible fluidic volume changes due to pressure,

compared with pressure-driven volume changes of the elastic boundaries. From scaling considerations, this limit is given by the

relation

p𝛽 ≪
d′∗

h0

or equivalently 𝛽 ≪
1

k4h0sn

,
1

k2h0tn

(1)

where 𝛽 = −1∕V(∂V∕∂p) is fluidic compressibility, V is a given fluidic volume, d′∗ is boundary deformation, and k is wavenum-

ber. The dynamics of the Newtonian, incompressible fluid is governed by the Navier-Stokes equation

𝜌

[
𝜕
𝜕t

+ (u∥,w) ·
(
𝛁∥,

𝜕
𝜕z

)]
(u∥,w) = −

(
𝛁∥,

𝜕
𝜕z

)
p + 𝜇

(
𝛁∥,

𝜕
𝜕z

)2

(u∥,w), (2)

and the continuity equation(
𝛁∥,

𝜕
𝜕z

)
· (u∥,w) = 0, (3)

supplemented by no-slip and no-penetration at the fluid-solid interfaces

(u∥,w) =
(
𝜕d∥,1
𝜕t

− b1

2
𝛁∥

𝜕d1

𝜕t
,
𝜕d1

𝜕t

)
, z = h0 + d1 (4a)

(u∥,w) =
(
𝜕d∥,2
𝜕t

+ b2

2
𝛁∥

𝜕d2

𝜕t
,
𝜕d2

𝜕t

)
, z = −h0 + d2, (4b)

consistent with the Kirchhoff hypothesis of linear displacements (d1, d2) with regard to the z-direction. The sheet deflections

are governed by the linearized plate theory [29].

−s1∇4
∥d1 + t1∇2

∥d1 + p − pe = m1

𝜕2d1

𝜕t2
, z = h0 + d1 (5a)

−s2∇4
∥d2 + t2∇2

∥d2 − skd2 − p = m2

𝜕2d2

𝜕t2
, z = −h0 + d2, (5b)

where t1, t2 are considered uniform and isotropic. (The boundary conditions (5) may be reduced to a free surface description by

setting t1 = 𝛾 , and s1 = m1 = 0, where 𝛾 is surface tension.)

The external propagating pressure wave is the real part of the function

pe = p̂eei(k·x∥+𝜔t) (6)

where p̂e is the amplitude of the wave, k∥ is the wave vector, k = |√k∥ · k∥| is the wavenumber, and 𝜔 is the angular frequency

(p̂e, k, 𝜔 ∈ ℝ). For the purpose of separating the flow problem from the bulk deformation of the structure, we denote hereafter

the deformation of the sheets by the average deformation

d = d1 + d2

2
(7)

and relative deformation

d′ = d1 − d2

2
. (8)

We define w′ as

w′ = w − 𝜕d

𝜕t
, (9)

where 𝜕d∕𝜕t represents fluid speed due to the mean motion of both sheets and w′ is thus fluid speed due to the relative motion

of the sheets.

Next we turn to scaling and order-of-magnitude analysis. Hereafter, asterisk superscripts denote characteristic values and

Capital letters denote normalized variables. The characteristic x∥ plane fluid velocity is u∗, the characteristic z-direction fluid

velocity is w′∗, the characteristic fluid pressure is p∗, the characteristic mean deformation is d∗ and the characteristic relative

deformation is d′∗ .

We define the following small parameters

𝜀1 = h0k ≪ 1, 𝜀2 = d′∗

h0

≪ 1 (10)
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corresponding to requirements of slender configuration and small relative deformation to fluid gap height. We define normal-

ized coordinates (X∥, Z) and time T

(X∥, Z) =
(

x∥k,
z

h0

)
, T = t𝜔, (11a)

normalized mean D and relative D′ sheet deflections

D = d

d∗
, D′ = d′

d′∗
(11b)

normalized fluid velocity

U∥ =
u∥
u∗ , W = w

𝜔d∗
, W′ = w′

𝜔d′∗
(11c)

and normalized fluid pressure P and external pressure Pe

P = p

p∗
, Pe =

pe

p∗
. (11d)

Substituting (11) into (2) and (3) yields the leading order momentum equations

𝛼2
𝜕U∥
𝜕T

= −𝛁P +
𝜕2U∥
𝜕Z2

+ O

(
𝜀2

1
, 𝜀1Re,

d∗

d∗′
𝜀1Re

)
, (12a)

𝛼2𝜀2
1

(
𝜕2D′

𝜕T2
+ d∗

d∗′
𝜕2D

𝜕T2

)
= −𝜕P

𝜕Z
+ O

(
𝜀2

1
, 𝜀3

1
Re,

d∗

d∗′
𝜀3

1
Re

)
, (12b)

and continuity equation

𝜕W′

𝜕Z
+ 𝛁 · U∥ = 0, (12c)

where Re = 𝜌lh0u∗∕𝜇 is the Reynolds number and 𝛼2 = 𝜌lh
2
0
𝜔∕𝜇 is the Womersley number.

Order of magnitude analysis of (12) yields d′∗𝜔∕u∗ ∼ 𝜀1, p∗h2
0
k∕𝜇u∗ ∼ 1, and 𝜀1Re∕𝛼2 = 𝜀2. Since the linear time-derivative

inertial term ∂(u∥,w)∕∂t in the LHS of (2) scales with 𝛼2 while the non-linear convective terms (u∥,w) · (𝛁, ∂∕∂z)(u∥,w) scale

with 𝜀1Re = 𝛼2𝜀2, we obtain the linearized Navier-Stokes momentum equations without any further assumptions. In addition,

from 𝜀2 ≪ 1 we obtain a restriction on the phase velocity of the wave 𝜔∕k ≫ u∗.

We substitute (11) into (4) and (5) to obtain the leading order boundary conditions

W′(Z ∼ 1) = 𝜕D′

𝜕T
+ O(𝜀2), U∥(Z ∼ 1) = O

(
b1k𝜀1,

𝜀5
1
p∗2k

2𝜇𝜔

)
, (13a)

W′(Z ∼ −1) = −𝜕D′

𝜕T
+ O(𝜀2), U∥(Z ∼ −1) = O

(
b2k𝜀1,

𝜀5
1
p∗2k

2𝜇𝜔

)
, (13b)

(
−s1k6h3

0

𝜇𝜔
∇4
∥ +

t1k4h3
0

𝜇𝜔
∇2
∥ −

m1𝜔h3
0
k2

𝜇
𝜕2

𝜕T2

)(
D + D′

)
+ P − Pe = 0 (13c)

and (
−

s2k6h3
0

𝜇𝜔
∇4
∥ +

t2k4h3
0

𝜇𝜔
∇2
∥ −

skh3
0
k2

𝜇𝜔
−

m2𝜔h3
0

k2

𝜇
𝜕2

𝜕T2

)(
D − D′

)
− P = 0. (13d)

In (13c,d), b1k, b2k ≪ 1 are necessary conditions for applying linear plate theory and 𝜀5
1
p∗2k∕2𝜇𝜔 ≪ 1 is a requirement of

negligible effect of longitudinal displacements of the sheets on fluid velocity.

We focus hereafter on d∗ ∼ d′∗ as well as 𝛼2 = O(1). Thus, the order of magnitude of the sheet displacements are d′∗ ∼
h3

0
p∗k2∕𝜇𝜔 and the fluidic pressure due to transverse acceleration is negligible (∂P∕∂Z ∼ 0, see (12b)). Leading order governing

equations, boundary conditions and order of magnitude for the case of dominant effect of transverse acceleration on fluidic

pressure are presented in Appendix A.
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3. Phase and amplitude of traveling-wave solutions

We study steady state oscillations, and thus examine traveling-wave solutions of frequency 𝜔 and wave vector k equal to

the external excitation pressure wave. Without loss of generality, we focus on two-dimensional configurations where the wave

vector is parallel to the x-direction. We thus seek solutions of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

U

W

D

D′

P

Pe

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Û(Z)
Ŵ(Z)

D̂

D̂′

P̂

P̂e

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
ei(X+T). (14)

The parameters with hat superscript (e.g. Û) represent the complex amplitude of the wave-form solutions.

Substituting (14) into (12) and (13), we simplify the governing Eq. (12a-c)

𝛼2iÛ − 𝜕2Û

𝜕Z2
∼ −îP,

𝜕P̂

𝜕Z
∼ 0,

𝜕Ŵ′

𝜕Z
+ iÛ = 0, (15)

as well as the boundary conditions to (13)

Ŵ′(1) + Ŵ′(−1) ∼ 0, Ŵ′(1) − Ŵ′(−1) ∼ 2iD̂′, Û(1) ∼ Û(−1) ∼ 0, (16a)

and

Z1

(
D̂ + D̂′

)
= P̂e − P̂, Z2

(
D̂ − D̂′

)
= P̂, (16b)

where the dimensionless parameters Z1 and Z2 are defined by (n = 1, 2)

Zn = −snk4 − tnk2 + mn𝜔
2 − sk(n − 1)

𝜇𝜔∕h3
0
k2

(17)

which may be interpreted as the ratio between the inertial and elastic stress within the solid and the traction applied by the fluid

due to the viscous squeeze flow. (1∕Zn is analogous to the Capillary number for thin films, Ca.) The limits of Z1 → 0 and Z2 → 0

correspond to resonance of elastic sheets 1 and 2, respectively. Negative values of Z1 and Z2 are associated with dominant elastic

bending and tension effects whereas positive values are associated with dominant inertial effects.

We initially solve ((15)) together with ((16a)) to obtain the longitudinal fluid velocity

Û =

(
cosh(

√
𝛼2iZ)

cosh(
√
𝛼2i)

− 1

)
P̂

𝛼2
. (18)

We substitute (18) into (15), integrate with respect to Z, and apply (16a) to obtain the transverse liquid velocity

Ŵ′ = i

(
Z − sinh(

√
𝛼2iZ)√

𝛼2i cosh(
√
𝛼2i)

)
P̂

𝛼2
. (19)

Substituting into (16a) we obtain the relative sheet deflection

D̂′ =

(
1 − tanh(

√
𝛼2i)√

𝛼2i

)
P̂

𝛼2
. (20)

We substitute (20) into (16a) and obtain the mean sheet deformation

D̂ =

(
1

𝛼2

(
1 − tanh(

√
𝛼2i)√

𝛼2i

)
+ 1

Z2

)
P̂. (21)

Finally, we subtract ((16b)) and substitute (20) to obtain the liquid pressure

P̂ =

(
2Z1

𝛼2

(
1 − tanh(

√
𝛼2i)√

𝛼2i

)
+ 1 + Z1

Z2

)−1

P̂e. (22)
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Fig. 2. Dynamics of a configuration with a lower rigid surface, i.e. Z2 → ±∞. (a) is the pressure ratio magnitude |P∕Pe|, (b) is the phase between the liquid pressure and

the external pressure ∠P − ∠Pe , (c) is the normalized magnitude of deformation |D1∕Pe|, and (d) is the phase of between the upper sheet deformation and the external

pressure ∠D1 − ∠Pe . The solid curve, defined by 𝛼2 ∼ −5Z1∕3, indicates maximal magnitude of deformation and liquid pressure for constant 𝛼2 . The dashed curve indicates

maximal magnitude of liquid pressure for constant Z1 (this curve coincides with the solid curve in panels c,d).

We thus obtain Û, Ŵ′, D̂′, D̂ and P̂, representing the steady-state dynamics by a complex amplitude which is a function of the

Womersley number 𝛼2 and the sheets impedance Z1 and Z2. Solutions (18)–(22) in their dimensional form may be found in

Appendix B, as well as the three-dimensional response dynamics for an arbitrary external pressure field.

For the limit of negligible fluidic inertial effects 𝛼2 → 0 (18)–(22) may be further simplified. In this limit, the liquid pressure

is

P̂ ∼
(

1 + i
2Z1

3
+ Z1

Z2

)−1

P̂e, (23)

the mean and relative deformations of the sheets are

D̂′ ∼ îP

3
, D̂ ∼

(
i

3
+ 1

Z2

)
P̂ (24)

and the fluid longitudinal and transverse speeds are

Û ∼ i(Z2 − 1)P̂
2

, Ŵ′ ∼ (Z3 − 3Z)P̂
6

. (25)

In the following section 4, a detailed parametric study of the results is presented in terms of the dimensionless parameters

𝛼2, Z1 and Z2.

4. Maps and extrema lines of fluid pressure and elastic displacements

We here present and discuss the frequency response relations obtained in Section 3 and map (in Figs. 2–5) the amplitude

and phase of liquid pressure and sheet deflection for various configurations. In all figures smooth lines represent values of Z1

yielding extrema of the amplitude of the examined parameter for set values of (𝛼2, Z2). Similarly, dotted lines represent values

of 𝛼2 yielding extrema points for set values of (Z1, Z2).
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Fig. 3. Dynamics of a configuration consisting of two sheets with identical impedance, Z1 = Z2. Panel (a) shows |P∕Pe|, panel (b) shows ∠P − ∠Pe, panel (c) shows |D1∕Pe|,
panel (d) shows ∠D1 − ∠Pe , panel (e) shows |D2∕Pe|, and panel (f) shows ∠D2 − ∠Pe . Grey colored area indicates that the value of the variable exceeds the maximal value

of the color bar and is singular at Z1 ∼ 0. The smooth line denotes values of Z1 yielding extrema for predefined 𝛼2. (For interpretation of the references to color in this figure

legend, the reader is referred to the Web version of this article.)

Extrema of the fluidic pressure are readily obtained from (18)–(22), where for simplicity we seek extrema of |P(𝛼2, Z1, Z2)∕Pe|
by examining |Pe∕P|2, defined by

||||Pe

P

||||2 =
(

2Z1F1 + 1 + Z1

Z2

)2

+
(

2Z1F2

)2
, (26)

where

F1(𝛼) =
1

𝛼2
− 2(

2𝛼2
) 3

2

⎛⎜⎜⎝
sinh

(√
2𝛼2

)
+ sin

(√
2𝛼2

)
cosh

(√
2𝛼2

)
+ cos

(√
2𝛼2

)⎞⎟⎟⎠ . (27)
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Fig. 4. Magnitude ratio and phase between the liquid pressure to external pressure as a function of 𝛼2, and Z1. The left column (a,c,e) shows |̂P∕P̂e|. The right column (b,d,f)

shows ∠P̂ −∠Pe . Panels (a,b) present Z2 = −6; panels (c,d) present Z2 = −3, and panels (e,f) present Z2 = −1. The smooth (29a) and dotted lines (29b) present extremum

of deflection with regard to Z1 (for set values of 𝛼2, Z2) and with regard to 𝛼2 (for set values of Z1, Z2), respectively.

and

F2(𝛼) =
2(

2𝛼2
) 3

2

⎛⎜⎜⎝
sinh

(√
2𝛼2

)
− sin

(√
2𝛼2

)
cosh

(√
2𝛼2

)
+ cos

(√
2𝛼2

)⎞⎟⎟⎠ . (28)

By differentiation of Eq. (26) we obtain values of Z1 yielding extrema of (26) for predefined (Z2, 𝛼
2)

Z1 = −
(

2F1 + 1

Z2

)
×

[(
2F1 + 1

Z2

)2

+ 4F2
2

]−1

. (29a)

Similarly, values of Z2 yielding extrema of (26) for predefined (Z1, 𝛼
2) are
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Fig. 5. Scaled average deformation magnitude |D|∕|Pe| (a,c,e), and scaled relative deformation |D′∕|Pe| (b,d,f), as a function of 𝛼2, and Z1. Panels (a,b) present Z2 = −6;

panels (c,d) present Z2 = −3, and panels (e,f) present Z2 = −1. The smooth and dotted lines present extremum of deflection with regard to Z1 (for set values of 𝛼2 , Z2) and

with regard to 𝛼2 (for set values of Z1, Z2), respectively (see Appendix C).

Z2 = − Z1

2Z1F1 + 1
. (29b)

Combining (29b) into (29a) yields the extrema Z1 = Z2 = 0 for a predefined value 𝛼2, in which |P(𝛼2, Z1, Z2)∕Pe| is singular and

is determined by the limit of the ratio Z1∕Z2.

Differentiating (26) with respect to 𝛼2, an implicit relation for extrema in terms of 𝛼2 for predefined values of both Z1 and Z2

is given by

Z1

[
Z1

𝜕
𝜕𝛼2

(
F2

1
+ F2

2

)
+ 𝜕F1

𝜕𝛼2

(
1 + Z1

Z2

)]
= 0. (29c)

Expressions for the extrema of the amplitude of the average D̂(Z1, Z2, 𝛼
2) and relative D̂′(Z1, Z2, 𝛼

2) solid displacements are

presented in Appendix C.
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4.1. Rigid lower surface, Z2 → ±∞

Fig. (2) presents (20) and (22) for the limits of Z2 → ±∞, corresponding to a fixed lower surface D2 ∼ 0. Panel (a) presents the

magnitude ratio of liquid pressure to external pressure |P∕Pe|, panel (b) shows the relative phase of liquid pressure ∠P − ∠Pe,

panel (c) shows the magnitude of deformation normalized by the external pressure |D1∕Pe|, and panel (d) shows the relative

phase of deformation ∠D1 − ∠Pe.

Panels (a) and (c) in Fig. (2) present maxima of the liquid pressure as well as sheet deformation along a smooth black line

defined by

𝛼2 ∼ −5Z1

3
(30)

(or in dimensional form 𝜔2 ∼ 5h0(s1k6 + t1k4)∕(3𝜌l + 5m1h0k2)), representing linearization of the extrema condition (29a)

with regard to 𝛼2 around 𝛼2 = 0 for |Z2| → ∞.

Fluid inertia thus reduces the resonance frequency of the configuration, which emanates from increasing the mass acceler-

ated during oscillations. On the line 𝛼2 ∼ −5Z1∕3, the fluidic pressure decreases with 𝛼2, the amplitude of deformation increases

with 𝛼2, and the sheet velocity is synchronized with the external pressure ∠W′
1
− ∠Pe = 𝜋. Thus for a given deformation ampli-

tude, external oscillating pressure waves apply the maximal external work on the sheet, and thus maximal dissipation, at the

line (30). The sheet deformation reaches a global maximum for 𝛼2 = 0 and Z1 = 0, corresponding to the resonance frequency

of the upper sheet and negligible fluid inertia parallel to the sheets. At the resonance frequency of the upper plate (on the

line Z1 = 0), the fluidic Womersley number 𝛼2 = 𝜌lh
2
0
𝜔∕𝜇 does not affect the liquid pressure which is equal to the external

pressure in both magnitude and phase. In addition, the liquid pressure amplitude is equal to the external pressure on the line

𝛼2 ∼ −5Z1∕6, on which however ∠W′
1
− ∠Pe ≠ 𝜋.

4.2. Equal impedance of the lower and upper sheets, Z1 = Z2

Fig. 3 shows dynamics for configurations where Z1 = Z2 (in dimensional terms− s1k4 − t1k2 + m1𝜔
2 = −s2k4 − t2k2 +

m2𝜔
2 − sk). Panel (a) presents |P|∕|Pe|, panel (b) shows ∠P − ∠Pe, panel (c) shows |D1|∕|Pe|, panel (d) shows ∠D1 − ∠Pe, panel

(e) shows |D2|∕|Pe|, and panel (f) shows ∠D2 − ∠Pe.

For predefined values of 𝛼2 and ratio of sheet impedance Z1∕Z2 ≡ R12, values of Z1 yielding extrema of fluidic pressure are

defined by

Z1 = − (1 + R12)F1(𝛼)
2F2

1
(𝛼) + 2F2

2
(𝛼)

, (31)

which can be approximated by Z1 ≈ −3(1 + R12)𝛼2∕5 (presented by smooth lines in Fig. 3) in the limit of 𝛼2 → 0. The limit of

(Z1, Z2) → (0, 0) yields various values of pressure and displacements depending on the ratio of Z1∕Z2. For lim(Z1 ,Z2)→(0,0) Z1∕Z2 =
−1, resonance dynamics are accompanied by significant increase in the magnitude of the fluidic pressure. In contrast, for

lim(Z1 ,Z2)→(0,0)Z1∕Z2 = 1 the fluidic pressure equals half of the external pressure excitation.

Panel (a) presents the extremum line (31) which is accompanied by a maximum of the relative displacements |D′|∕|Pe|. This

maximum line is similar to the modified resonance of the upper plate presented in Fig. 2a. Panels (c) and (e) present the solid

resonances along Z1 = Z2 = Z1 + Z2 = 0 and an additional fluidic maximum of the upper plate near the line (31). Panels (d)

and (f) yield a sharp phase difference of D1 and D2 between Z1 > 0 and Z1 < 0. Both D1 and D2 are near anti-phase for small

negative Z1 and in-phase for small positive Z1. In contrast, the phase of the fluidic pressure (panel b) presents gradual change

near resonance. Panels (a), (c) and (e) show that the resonance of the solid deflection for Z1 = Z2 → 0, yields similar oscillations

of the upper and lower sheets. These oscillations are accompanied by synchronous liquid pressure with half the magnitude of

the external pressure (|P|∕|Pe| = 1∕2 and ∠P − ∠Pe = 0). Thus, both sheets are applied with identical excitations at resonance.

4.3. Asymmetric elastic sheets

In Figs. (4) and (5) we examine the effect of modifying the properties of the lower surface on the frequency response and

extrema for configurations where Z2 = −6,−3,−1 for the range−10 ≤ Z1 ≤ 10 and 0 ≤ 𝛼2 ≤ 10.

Fig. 4 presents scaled fluid pressure amplitude |P∕Pe| (left column) and relative phase ∠P − ∠Pe (right column). Panels (a,b)

correspond to Z2 = −6, panels (c,d) correspond to Z2 = −3, and panels (e,f) correspond to Z2 = −1. The smooth lines (29a)

represent values of Z1 yielding extrema of the liquid pressure amplitude for set values of (𝛼2, Z2). The dotted lines (29c) present,

similarly, values of 𝛼2 for set values of (Z1, Z2).
For Z2 = −6, panel (a) presents maxima and saddle points along (29c) where the maximum associated with 𝛼2 = 0 is on

Z1 = −(1∕Z2 + 4Z2∕9)−1, not on Z1 = 0. In this case the fluid inertia decreases the resonance frequency, similarly to the cases

presented in Figs. 2 and 3. However, as Z2 increases additional maximum emerge (see panel c) and coalesce (see panel e) to a

single line near Z1 ≈ −(1∕Z2 + 4Z2∕9)−1 in which the magnitude of the derivative of fluid pressure amplitude and phase with

regard to Z1 sharply increases. This new extremum emanates from a combined fluid-elastic interaction increasing the fluidic

pressure (see Eq. (22)) and not a modified solid resonance. As Z2 becomes smaller, configurations with positive values of Z1
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Fig. 6. Illustration of the additional resonance frequency emerging due to parallel motion of fluid. Panels (a1, a2) examine equal sheet impedance Z1 = Z2 . Normalized

displacement of the upper sheet (a1, b1) and fluidic pressure (a2 , b2) for an elastic Hele-Shaw are marked by smooth black lines. For comparison, the isolated solid response

of the upper sheet (grey lines), the bottom sheet (dashed orange lines) and the two sheets with a constraint of constant gap (blue dashed) are presented. (For interpretation

of the references to color in this figure legend, the reader is referred to the Web version of this article.)

become increasingly synchronized with the external pressure and the liquid pressure, whereas configurations with negative Z1

approach the inverse phase of −180◦. The fluidic pressure amplitude is equal to the external amplitude on two curves, one of

which is the upper sheet resonance frequencies line Z1 = 0.

Fig. 5 focuses on elastic deflection and presents the magnitude of average deformation |D|∕|Pe| (left column), and the relative

deformation |D′|∕|Pe| (right column) as a function of 𝛼2 and Z1 for identical parameter range as in Fig. 4. The smooth and dotted

lines represent extremum of deflection with regard to Z1 (for set values of 𝛼2, Z2) and with regard to 𝛼2 (for set values of

Z1, Z2), respectively, see Appendix C. The patterns presented for both the scaled average deflection |D|∕|Pe| and scaled relative

deflection |D′|∕|Pe| closely follow that of the fluidic pressure. The average deflection |D|∕|Pe| does not involve viscous flow and is

thus undamped, in contrast with |D′|∕|Pe|. Hence, while far from resonance the magnitude of |D|∕|Pe| and |D′|∕|Pe| are similar,

near resonance frequencies (e.g. near the line Z1 ≈ −(1∕Z2 + 4Z2∕9)−1 for Z2 = −1), the ratio |D|∕|D′| increases indefinitely and

eventually invalidates the model assumption of O(|D|) ∼ O(|D′|).
5. Discussion

In Section 4 the response of an elastic Hele-Shaw cell was presented in terms of the parameters (𝛼, Z1, Z2), which com-

bine effects of elasticity, viscosity, fluid and solid inertia, as well as the frequency and wavelength of the excitation. While

Figs. 2–5 describe a wide range of parameters, the effect of changing excitation frequency or wavelength of a specific configu-

ration requires following curved lines (e.g. on Zn = (−snk4 − tnk2 + mn𝜔
2 − sk(n − 1))∕(𝜇𝜔∕h3

0
k2), n = 1, 2 in Figs. 2 and 3) or

interpolation between panels (as in Figs. 4 and 5). Clarity might thus benefit from a less general but explicit presentation of

the amplitude of the fluidic pressure and elastic displacement vs. the excitation frequency for specific and constant physical

parameters. In addition, the effect of the fluid will be emphasized here by comparison with relevant fully elastic configurations.

5.1. The emergence of an additional fluid-elastic resonance frequency

In the limit of negligible fluidic effects the dynamics of the upper surface will approach the dynamics of an isolated sheet.

Alternatively, in the limit of a highly viscous fluid the configuration will be similar to two elastic sheets with a constraint of con-

stant gap (see Appendix D). Thus, we expect multiple elastic resonance frequencies defined by Z1 = 0, Z2 = 0 and Z1 + Z2 = 0
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Fig. 7. Frequency response of elastic Hele-Shaw cells for three physical configurations. In panel (a) the bottom surface is rigid. In panel (b) the bottom surface is mass-less

and compliant. In panel (c) the bottom surface mass is finite and compliant. Red, green, and orange vertical lines correspond to resonance frequencies of the upper sheet,

the lower substrate, and a combine reference configuration with a constraint of constant gap between the upper sheet and the lower surface. (For interpretation of the

references to color in this figure legend, the reader is referred to the Web version of this article.)

to appear. However, from Figs. 2–5 an additional response frequency is evident, which involves the interaction between motion

of fluid parallel to the elastic sheets and elastic displacements and external actuation perpendicular to the sheets.

This fluid-elastic resonance is presented in Fig. 6 for two illustrative configurations. Panel (a) examines the nor-

malized displacement of the upper sheet (a1) and fluid pressure amplitude (a2) of identical sheets Z1 = Z2 (defined

by 𝜌1 = 𝜌2 = 103Kg∕m3, s1 = s2 = 0.054 Pa∕m3, m1 = m2 = 1 Kg∕m2, 𝜇 = 1 Pa · s, 𝜌l = 103Kg∕m3, h0 = 10−3m,

2b1 = 2b2 = 0.001 m, k = 450 m−1, t1 = t2 = sk = 0). Panel (b) similarly presents upper sheet normalized displacement (b1)

and fluid pressure amplitude (b2) for configuration where Z2 ≫ Z1, (defined by 𝜌1 = 𝜌2 = 103Kg∕m3, s1 = 0.0065 Pa∕m3,

s2 = 0.057 Pa∕m3, m1 = m2 = 1 Kg∕m2, 𝜇 = 1 Pa · s, 𝜌l = 103Kg∕m3, h0 = 10−3, 2b1 = 2b2 = 10−3m, k = 450 m−1,

t1 = t2 = sk = 0). Normalized deformation magnitude of the upper plate of elastic Hele-Shaw cell is marked by black smooth

lines. Grey, dashed-orange and dotted-blue lines mark relevant fully elastic configurations of the upper sheet, lower sheet and

connected elastic sheets, respectively. All deformations are scaled by d∗ = 3 · 10−6m.

For both configurations presented in panels (a) and (b), at lower frequencies corresponding to |Z1| ≫ 1, the amplitude of fluid

pressure decreases with 𝜔 and displacement of the top sheet is identical to that of an isolated elastic sheet. For the opposite

limit of large 𝜔, corresponding to |Z1|, |Z2| ≪ 1, the elastic Hele-Shaw cell oscillates as two elastic sheets with a constraint

of constant gap (see Appendix D). For panel (a), in accordance with the results presented in Fig. 3, the identical properties of

the bottom and top sheets yield a single solid resonance frequency 𝜔 ≈ 14.9 KHz accompanied by |p∕pe| = 0.5. In addition to
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this elastic resonance frequency, a clear additional extremum frequency is evident at 𝜔 ≈ 5.05 KHz, near the extremum of the

fluidic pressure at𝜔 ≈ 5.05 KHz. A similar deformation extremum is presented in panel (b) for𝜔 ≈ 7.77 KHz, near the pressure

extremum of 𝜔 ≈ 8.09 KHz, in which it is the dominant resonance frequency due to the rigid lower elastic sheet eliminating

other solid resonances.

5.2. Elastic Hele-Shaw cell as a mechanical filter

A mechanical filter is a device designed to amplify or reduce external excitation based on frequency. It is common to describe

such devices by an analogue to electrical filters. Examining an elastic Hele-Shaw cell as a mechanical filter, the effects of elas-

ticity, inertia and viscosity are analogues to electrical components of capacitance, inductance and resistance. Similarly to the

analysis of electric filters, we are interested in characterizing the mechanical impedance of an Elastic Hele-Shaw cell.

Fig. 7 presents the magnitude and phase of liquid pressure vs. excitation frequency 𝜔 for wavelengths of l = 0.06, 0.08 and

0.1 m, denoted by the solid, dashed, and dotted lines, respectively. Vertical lines denote resonance frequency of the reference

solid configurations of the upper sheet (red), bottom surface (green) and two sheets with a constraint of constant gap (orange). In

all panels (a-c) the properties of the upper sheet and fluid layer are defined by bending resistance s1 = 0.8 Pa m3, sheet thickness

b1 = 1 cm, sheet density 𝜌1 = 954 Kg∕m3, liquid viscosity 𝜇 = 60 Pa · s, liquid gap height 2h0 = 5 mm, and liquid density

𝜌l = 750 Kg∕m2 (characteristic to rubber and silicon oil). In panel (a) the bottom surface is rigid. In panel (b) the bottom surface

is an elastic spring array with sk = 12 GPa∕m. In panel (c) the bottom surface is an elastic spring array with sk = 12 GPa∕m and

mass-per-area of m2 = 25 Kg∕m2.

In all of the configurations, sufficiently small frequencies yield negligible liquid pressure amplitude. An intermediate range

of frequencies, which include the resonance frequency of the elastic sheet, leads to liquid pressure with amplitude and phase

identical to the external pressure. In configuration (a) large frequencies lead to decay of the liquid pressure due to growing

dominance of the elastic sheet inertia. Thus, for Z2 → ±∞, the response of the system is similar to a bandpass filter and the

fluidic pressure cannot exceed the external excitation. In configuration (b), similar behaviour is observed with an additional

peak of the fluidic pressure near the elastic resonance frequency defined by (29a)-(29c) (at 𝜔 ≈ 40 KHz). At greater frequencies

both the liquid pressure and phase decay to zero. Configuration (c) involves an additional resonance frequency of the lower

surface, yielding a minima of the pressure near the combined reference resonance (Z1 + Z2 = 0).

6. Concluding remarks

This work theoretically examined the frequency response of two parallel elastic sheets containing a thin liquid film, excited

by traveling pressure waves. Applying the linearized plate model for the elastic sheets, order-of-magnitude analysis yielded

that fluidic non-linear inertial terms are negligible compared with the linear terms, allowing the linearization of the Navier-

Stokes equations. Phase and amplitude of traveling-wave solutions were calculated by modal analysis and were utilized to

present a comprehensive parametric study of frequency response in terms of solid displacements and fluidic pressure for various

configurations. The results presented a new resonance frequency related to fluid acceleration parallel to the sheets, as well as a

bandpass filter behaviour of such configurations.

The presented analysis focused on configurations where the average and relative displacements are of similar order of magni-

tude O(D̂′) ∼ O(D̂). In the limit of D̂′ ≪ D̂ (presented in Appendix A), although liquid pressure is created by elastic displacements,

it is not significant in determining the displacement dynamics. While the modal analysis examined response to wave excita-

tion with a single frequency and amplitude, the three-dimensional response dynamics for an arbitrary external pressure field is

immediately obtained from an inverse Fourier transform (see Appendix B).

While the presented results clearly showed that a viscous layer may be used to improve the system mechanical response

to external excitation, further study is required in order to practically realize such protective layers. Specifically of interest is

examining effects of a localized sudden load as well as effect of boundary conditions on the mechanical impedance. Viscous-

elastic dynamics can also be introduced to other commonly used protective layers such as honeycomb structures which include

interconnected fluid-filled pores, and periodically laminated structures containing multiple viscous layers.

Appendix A. Leading order equations for d′∗∕d∗ ≪ 1

For dynamics characterized by d′∗∕d∗ ∼ 𝜀2
1
≪ 1 order of magnitude yields that the convection terms 𝜌(u∥,w) ·(

𝛁∥, 𝜕∕𝜕z
)
(u∥,w) in Eq. (2) scales as Re∕𝜀1 and may not be neglected. In addition, the sheets mean acceleration 𝜕d2∕𝜕t2 yields

significant pressures gradients in the transverse direction (∂p∕∂z). Thus, the leading order governing Eq. (12) are of the form

𝛼2 𝜕U

𝜕T
+ Re

𝜀1

𝜕D

𝜕T

𝜕U

𝜕Z
= −𝛁P + 𝜕2U

𝜕Z2
+ O(𝜀2

1
, 𝜀1Re, ), (A.1a)

𝛼2 𝜕2D

𝜕T2
= −𝜕P

𝜕Z
+ O

(
𝜀2

1
, 𝜀1Re

)
, (A.1b)
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𝜕W′

𝜕Z
+ 𝛁 · U = 0, (A.1c)

and leading order boundary conditions (13) are

W′(Z = 1) + W′(Z = −1) = O(𝜀2), (A.2a)

W′(Z = 1) − W′(Z = −1) = 2
𝜕D′

𝜕T
+ O(𝜀2), (A.2b)

U(Z = 1) = O(b1k𝜀1), U(Z = −1) ∼ O(b2k𝜀1), (A.2c)[(
−s1k4∇4 + t1k2∇2 − m1𝜔

2 𝜕2

𝜕T2

)
h0

𝜇𝜔

]
(D + 𝜀2

1
D′) + P − Pe = 0, (A.2d)[(

−s2k4∇4 + t2k2∇2 − sk − m2𝜔
2 𝜕2

𝜕T2

)
h0

𝜇𝜔

]
(D − 𝜀2

1
D′) − P = 0. (A.2e)

Eqs. (A.1) and (A.2) yield that in the leading order dynamics for d′∗∕d∗ ∼ 𝜀2
1
≪ 1, the liquid pressure is created by elastic dis-

placements, but is not significant in determining displacement dynamics of steady-state solutions.

Appendix B. Results in dimensional form

We present here the steady-state oscillating solutions in dimensional form. The dimensional liquid pressure (22) is

p̂ =

⎛⎜⎜⎜⎜⎜⎜⎝

2h0k2(−s1k4 − t1k2 + m1𝜔
2)

𝜌l𝜔2

⎛⎜⎜⎝1 −
tanh(

√
𝜌lh

2
0
𝜔i∕𝜇)√

𝜌lh
2
0
𝜔i∕𝜇

⎞⎟⎟⎠
+1 + −s1k4 − t1k2 + m1𝜔

2

−s2k4 − t2k2 − sk + m2𝜔2

⎞⎟⎟⎟⎟⎟⎟⎠

−1

p̂e, (B.1)

the dimensional longitudinal (18) and transverse (19) liquid velocities are

û =

(
cosh(

√
𝜌l𝜔i∕𝜇z)

cosh(
√
𝜌l𝜔i∕𝜇h0)

− 1

)
kp̂

𝜔𝜌l

(B.2)

and

ŵ′ = i

(
z

h0

−
sinh(

√
𝜌l𝜔i∕𝜇z)√

𝜌l𝜔i∕𝜇h0 cosh(
√
𝜌l𝜔i∕𝜇h0)

)
k2h0p̂

𝜔𝜌l

. (B.3)

The dimensional relative deformation (20) is

d̂′ =

(
1 −

tanh(
√
𝜌l𝜔i∕𝜇h0)√

𝜌l𝜔i∕𝜇h0

)
k2h0p̂

𝜔2𝜌l

(B.4)

and the dimensional mean sheet deformation (21) is

d =

(
1 −

tanh(
√
𝜌l𝜔i∕𝜇h0)√

𝜌l𝜔i∕𝜇h0

+ 𝜇𝜔
h3

0
k2(−s2k4 − t2k2 − sk + m2𝜔2)

)
h0k2p̂

𝜌l𝜔2
(B.5)

The three-dimensional response dynamics for an arbitrary external pressure field is therefore given in dimensional form by

Ref. [30].

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

p

ux

vy

w′

d

d′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 1

(2𝜋)3∕2 ∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞

̂⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

p̂

kxû∕k

kyû∕k

ŵ′

̂
d

d̂′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
e−i(kxx+kyy+𝜔t)dkxdkyd𝜔, (B.6)
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where

√
k2

x + k2
y = k, and ux, uy denote the x, y direction velocity components and p̂e is calculated from the inverse transforma-

tion

p̂e(kx, ky, 𝜔) =
1

(2𝜋)3∕2 ∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞
pe(x, y, t)ei(kxx+kyy+𝜔t)dxdydt. (B.7)

Eqs. (B.6) and (B.7) require the dimensional form since the normalization of the two-dimensional problem was dependent on k

and 𝜔.

Appendix C. Extrema points of D̂′(Z1, Z2, 𝜶
2), ̂D(Z1, Z2, 𝜶

2)

We obtain extrema points of the magnitude of D̂′ = FP̂. The solution consists of the liquid pressure multiplied by F =
F1 + iF2 = (𝛼2)−1(1 − tanh(

√
𝛼2i)∕

√
𝛼2i). Thus, extrema points with respect to Z1, Z2 (where the remaining variables are kept

constant) will yield the same expressions as for the liquid pressure - Eq. (29a) and (29b), respectively. We now obtain extremum

points with respect to 𝛼2. We simplify the problem by investigating||||| P̂e

D̂′

|||||
2

=
(2Z1F1 + 1 + Z1Z−1

2
)2 + (2Z1F2)2

F2
1
+ F2

2

. (C.1)

Differentiating with respect to 𝛼2 and equating to zero yields

Z1

(
4
𝜕F1

𝜕𝛼2
|F|2 − (4F1 + Z−1

2
)𝜕|F|2
𝜕𝛼2

)
− 𝜕|F|2

𝜕𝛼2
= 0. (C.2)

We now obtain extremum points of the magnitude of D̂ = (F + Z−1
2

)P̂. The equation defining the extremum point of D̂ with

respect to Z1 is the same as the liquid pressure and relative deformation and is defined by (29a). Next we obtain an expression

for the extrema point of D̂ for 𝛼2. We simplify the problem by investigating||||| P̂e

D̂

|||||
2

=
(2Z1F1 + 1 + Z1Z−1

2
)2 + (2Z1F2)2

(F1 + Z−1
2

)2 + F2
2

. (C.3)

By differentiating (C.3) with respect to 𝛼2 and equating to zero yields an inexplicit relationship

AZ2
1
+ BZ1 + C = 0, (C.4)

where A = 𝜕𝛼2 ((2F1 + Z−1
2

)2 + (2F2)2) × ((F1 + Z−1
2

)2 + F2
2
)−1, B = 𝜕𝛼2 (4F1 + Z−1

2
) × ((F1 + Z−1

2
)2 + F2

2
)−1, and C =

𝜕𝛼2 ((F1 + Z−1
2

)2 + F2
2
)−1. We may solve (C.4) as a quadratic equation in terms of Z1 and obtain a functional relationship

between Z1 to Z2 and 𝛼2.

Appendix D. Comparison between dynamics of two sheets connected by a stiff spring array to an elastic Hele-Shaw cell

We here calculate the phase and amplitude of the steady state oscillations for a reference configuration consisting of two

elastic sheets connected by a spring array with coefficient s12. The response of two elastic sheets with a constraint of constant

gap or an isolated upper sheet is obtained directly from limits of the spring array coefficient.

The governing equation of the upper elastic sheet is

−s1

𝜕4d1

𝜕x4
+ t1

𝜕2d1

𝜕x2
− s12(d1 − d2) − pe = m1

𝜕2d1

𝜕t2
, (D.1)

and the governing equation of the lower elastic sheet is

−s2

𝜕4d2

𝜕x4
+ t2

𝜕2d2

𝜕x2
− skd2 + s12(d1 − d2) = m2

𝜕2d2

𝜕t2
, (D.2)

where s12 is the spring stiffness connecting the sheets. We substitute the wave form

f = f̂ ei(kx+𝜔t), f = d1, d2, pe, (D.3)

for all variables, and obtain the upper sheet deformation

d̂1 = z̃2 − s12

(̃z2 − s12)(̃z1 − s12) − s2
12

p̂e, (D.4)

and the lower sheet deformation

d̂2 = −s12

(̃z2 − s12)(̃z1 − s12) − s2
12

p̂e. (D.5)
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where z̃n = −snk4 − tnk2 + mn𝜔
2 − sk(n − 1), n = 1, 2. From Eq. (D.5), and (D.4) we see that resonance is obtained when

(̃z2 − s12)(̃z1 − s12) − s2
12

= 0 (D.6)

isolating z̃1 we obtain

z̃1 =
(

1

s12

− 1

z̃2

)−1

(D.7)

for the case the spring is much stiffer than the sheets we obtain that resonance will occur at z̃1 = −z̃2. The case of which the

spring is much softer than z1 yields an isolated upper sheet.

Appendix E. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.jsv.2018.08.047.
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