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This work examines the effect of hydrodynamic interaction between two closely spaced
waving elastic filaments on the propulsion and maneuvering of an artificial microswimmer.
The filaments are actuated by a forced oscillation of the slope at their clamped end and
are free at the opposite end. We obtain an expression for the interaction force and apply an
asymptotic expansion based on a small parameter representing the ratio between the elastic
deflections and the distance between the filaments. The leading-order interaction forces
yield asymmetric oscillation patterns at the two frequencies (ω1,ω2) in which the filaments
are actuated. Higher orders oscillate at frequencies which are combinations of the actuation
frequencies, where the first order includes the 2ω1, 2ω2, ω1 + ω2, and ω1 − ω2 harmonics.
For configurations with ω1 ≈ ω2, the ω1 − ω2 mode represents the dominant first-order
interaction effect due to significantly smaller effective Sperm number. For in-phase actuation
with ω1 = ω2, the deflection dynamics are identical to an isolated filament with a modified
Sperm number. Phase difference between the filaments is shown to have significant effect on
the time-averaged forces. Optimal Sperm numbers for in-phase and antiphase actuation are
calculated. Turning moments due to phase difference between the filaments are presented,
yielding optimal maneuvering for phase of 90◦. Calculation of the effect of hydrodynamic
interaction on the propulsive forces yielded that antiphase beating is more efficient than the
in-phase scenario, in contrast with the commonly used assumption of maximal efficiency
of the synchronized state. Experiments are conducted to verify and illustrate some of the
theoretical predictions.
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I. INTRODUCTION

We study the interaction between two closely spaced oscillating elastic filaments which are
immersed within a viscous liquid. The filaments are actuated by a forced oscillation of the slope at
their clamped ends, which may vary in frequency, amplitude, and phase. We focus on configurations
with negligible inertial effects and linear elasticity, where the dynamics are governed by a balance
between viscous and elastic forces.

Various previous works examined the viscous-elastic dynamics of a single elastic filament actuated
by a forced oscillation at its clamped end. These include Machin [1], who was the first to analytically
obtain the deflection modes of such a passive elastic filament for the case of actuation of the slope
at the fixed end. Using a similar approach, Wiggins and Goldstein [2] and Wiggins et al. [3] studied
deflection modes and propulsion forces for forced oscillations and impulses of the position of the fixed
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end, combined with a requirement of zero torque. An experimental study was conducted by Tony et al.
[4], who measured both deflection and propulsion for a single elastic filament actuated by oscillation
of the slope. The experimental data showed good agreement with both linear and nonlinear theoretical
predictions. Other relevant works include Camalet and Jülicher [5], who studied the dynamics of
an elastic filament actuated by internal moments, and Arco et al. [6], who experimentally studied
oscillating flexible sheet as a novel pumping mechanism in the creeping flow regime.

Previous studies on interaction between two oscillating elastic filaments focused mainly on
forced deformations in the context of synchronization dynamics between closely spaced waving
flagella [7,8]. The first evidence of such synchronization was presented by Gray [9], who observed
synchronized in-phase beating of spermatozoa flagella. One of the first theoretical works on
synchronization of flagella was conduced by Taylor [10], who studied the simplified model of
two infinite sheets with prescribed waveforms and showed that energy dissipation is minimized
for in-phase oscillations and gradually increases with phase-difference. Fauci [11] compared these
results with numerical simulations and showed that the phase difference evolves until sheets are
either perfectly in-phase or antiphase. These observations raised a question regarding the phase
locking of two nearby swimmers, since analytical and numerical studies [10–14] depicted a possible
stable antiphase beating with maximum energy dissipation in contrast to biological studies [15–17]
that depicted almost exclusively in-phase beating with minimal energy dissipation. A later work by
Elfring and Lauga [13] showed that in configurations involving elasticity the phase difference will
evolve into an in-phase beating. Other works focused on experiments in biological systems, including
Brumley et al. [15], who demonstrated that synchronization dynamics of the Volvox carteri may
indeed occur due to the hydrodynamic effects alone. Yang et al. [18] used multiparticle collision
dynamics simulation technique to model the flow field around two nearby sperm cells and found that
synchronization occurs when two sperm cells adjust their relative position. Once synchronization
develops, the sperm cells hydrodynamically attract each other. Recent works by Goldstein et al.
[19] and Man et al. [20] applied asymptotics, utilizing the distance between the filaments as a small
parameter, in order to obtain analytic approximation of the interaction forces and synchronization
dynamics of two oscillating filaments.

The current work aims to apply simplified experiments and linearized models (such as presented
in Refs. [19] and [20]) to examine the effect of hydrodynamic interactions on the deflection patterns,
forces, and moments created by an artificial microswimmer propelled by two actuated passive
filaments. Of specific interest are actuations yielding to optimal propulsion energetic efficiency
and effective maneuvering. This work is arranged as follows: In Sec. II we present the problem
formulation, compute the interaction forces and apply asymptotic expansions. In Sec. III we present
the amplitude and phase of the deflection modes and compute the the forces and moments applied
by the beating filaments. In Sec. IV we define the experimental methodology and compare the
experimental data to the analytic results. In Sec. V we give concluding remarks.

II. ANALYSIS

We examine the fluidic interaction between two closely spaced slender elastic filaments immersed
in a viscous liquid and actuated due to a forced oscillation of the slope at their clamped end. The
coordinates and configuration are illustrated in Fig. 1. The Cartesian coordinate system is denoted by
(x,y,z), and time is denoted by t . The filaments, at rest, are parallel to the x direction, and their centers
oscillate within the x-y plane. The fluid viscosity and density are denoted by μ and ρ, respectively.
The filament flexural rigidity is s, the beam mass per-unit length is m, the gap between the centers
of the filaments is d, and the gap at rest is d0. The radius and length of the filaments are rc and l,
respectively. The forced oscillations of the slope of the filaments at x = 0 are at frequencies ωi and
amplitudes φi (where i = 1 and i = 2 denote filaments 1 and 2, respectively). The phase difference
between the forced oscillations is γ . The deflection of the filaments is vi , where we define an
auxiliary average deflection va = (v1 + v2)/2 and an auxiliary relative deflection vd = (v1 − v2)/2.
The perpendicular drag coefficient of the filaments is ξ⊥.
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FIG. 1. Illustration of the examined configuration consisting of two oscillating elastic filaments immersed
in a viscous fluid. The filaments, at rest, are parallel to the x axis, and their centers oscillate within the x-y
plane. The distance between the bases of the filaments is d0, and the deflections are denoted by v1 and v2 for
filament 1 and 2, respectively. The length of both filaments is l.

Hereafter, asterisk superscripts denote characteristic values and capital letters denote normalized
variables. The characteristic average deflection is v∗

a , characteristic relative deflection is v∗
d and

characteristic frequency is ω∗. We define the small parameters [where v∗ = max (v∗
a ,v

∗
d )]:

ρω∗(v∗)2

μ
� 1,

m(ω∗v∗)2

s
� 1,

d0

l
� 1,

(1)
rc

d0
� 1,

v∗
a

l
� 1, ε = v∗

d

d0
� 1,

corresponding to assumptions of negligible fluidic inertia (small Womersley number), negligible
solid inertia, small gap to filament length ratio, small filament radius to gap ratio, small average
deflection to length ratio, and small relative deflection to gap ratio.

In addition, we apply the commonly used approximation [see Refs. 1–4,21–24] of perpendicular
viscous drag of the form �wξ⊥, where �w is the relative perpendicular speed between the filament
and the surrounding fluid and the coefficient ξ⊥ is approximately constant throughout the filament.
We define the function 	(d) as the ratio of the induced fluid speed due to the adjacent filament
and the velocity of the adjacent filament. Thus, under the above assumptions, the deflection of the
filaments is governed by

s
∂4vi

∂x4
= −ξ⊥

[
∂vi

∂t
− 	(d)

∂vj

∂t

]
, (2a)

where d = d0 + v1 − v2, supplemented by the boundary conditions

∂vi(0,t)

∂x
= φie

i2π[ωi t+(i−1)γ ],

vi(0,t) = ∂2vi(l,t)

∂x2
= ∂3vi(l,t)

∂x3
= 0, (2b)

where for filament 1, (i,j ) = (1,2) and for filament 2, (i,j ) = (2,1).
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The flow field due to a slender filament moving relative to a viscous fluid in the creeping
flow regime may be approximated by a uniform distribution of Stokeslets and dipoles positioned
along the centerline of the filament. For motion perpendicular to the centerline, the magnitude
of the Stokeslet distribution is ξ⊥�w, and the dipole magnitude is r2

c ξ⊥�v/4μ, where ξ⊥ ≈
8πμ/[0.386 + ln(l2/r2

c )] [22]. Thus, the induced speed may be approximated by (using the same
integral approximations and approach used in Ref. [22])

	(d) ≈ ξ⊥
4πμ

[
1 + ln

(
2l

d

)]
. (3)

[See the derivation of Eq. (14) in Ref. [20], which is identical in leading order.]
Equations (2) may be decoupled by subtracting the equation governing filament 2 from the

equation governing filament 1, and substituting relative deflection vd = (v1 − v2)/2, thus isolating
vd . Similarly, by addition of the governing equations of both filaments and substituting average
deflection va = (v1 + v2)/2, the governing equation for va may be obtained, which, however, does
depends on vd .

We define the normalized axial coordinate X = x/l, normalized time T = t2πω∗, normalized
average deflection Vd = vd/v

∗
d , normalized relative deflection Va = va/v

∗
a , normalized angular

speeds (�1,�2) = (ω1/ω
∗,ω2/ω

∗), and normalized gap D = d/d0 = 1 + v1/d0 − v2/d0.
Substituting normalized variables, the equations governing Va and Vd are

∂4Vd

∂X4
= −S4

p[1 + 	(D = 1 + 2εVd )]
∂Vd

∂T
(4a)

and

∂4Va

∂X4
= −S4

p[1 − 	(D = 1 + 2εVd )]
∂Va

∂T
, (4b)

where Sp = (ξ⊥l42πω∗/s)1/4 is the Sperm number. Equations (4) are supplemented by the
normalized boundary conditions

Vd

∣∣
X=0 = 0,

∂Vd

∂X

∣∣∣
X=0

= φ1l

2v∗
d

ei�1T − φ2l

2v∗
d

ei(�2T +2πγ ), (5a)

Va

∣∣
X=0 = 0,

∂Va

∂X

∣∣∣
X=0

= φ1l

2v∗
a

ei�1T + φ2l

2v∗
a

ei(�2T +2πγ ), (5b)

representing the hinge boundary condition and slope actuation at X = 0 and

∂2Vd

∂X2

∣∣∣
X=1

= ∂3Vd

∂X3

∣∣∣
X=1

= 0, (5c)

∂2Va

∂X2

∣∣∣
X=1

= ∂3Va

∂X3

∣∣∣
X=1

= 0, (5d)

representing the free end at X = 1. From (5), the characteristic values v∗
a and v∗

d may be defined as

v∗
d = max

[
φ1l

2
cos (�1T ) − φ2l

2
cos (�2T + 2πγ )

]
(6a)

and

v∗
a = max

[
φ1l

2
cos (�1T ) + φ2l

2
cos (�2T + 2πγ )

]
. (6b)
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Applying the linearization scheme presented in Ref. [20], asymptotic expansion of the nonlinear
(4) allows for approximation to a set of linear equations at the limit ε = v∗

d/d0 � 1, by presenting
	(D) as a Taylor series around D = 1:

	(D) ∼ 	(1) + ε2Vd

∂	(D)

∂D
+ (2εVd )2

2

∂2	(D)

∂D2
, (7)

as well as asymptotically expanding Vd and Va:

Vd ∼ Vd,0 + εVd,1 + ε2Vd,2, Va ∼ Va,0 + εVa,1 + ε2Va,2. (8)

Substituting (7) and (8) into (4) and defining the differential operators L+ = ∂4/∂X4 + S4
p[1 +

	(1)]∂/∂T and L− = ∂4/∂X4 + S4
p[1 − 	(1)]∂/∂T yields the leading order O(1) of (4):

L+Vd,0 = 0, L−Va,0 = 0, (9)

as well as order O(ε),

L+Vd,1 = −2S4
pVd,0

∂Vd,0

∂T

∂	(D)

∂D
, L−Va,1 = 2S4

pVd,0
∂Va,0

∂T

∂	(D)

∂D
, (10)

and order O(ε2),

L+Vd,2 = −2S4
p

{
∂Vd,0

∂T

[
Vd,1

∂	(D)

∂D
+ V 2

d,0
∂2	(D)

∂D2

]
+ ∂Vd,1

∂T
Vd,0

∂	(D)

∂D

}
,

(11)

L−Va,2 = 2S4
p

{
∂Va,0

∂T

[
Vd,1

∂	(D)

∂D
+ V 2

d,0
∂2	(D)

∂D2

]
+ ∂Va,1

∂T
Vd,0

∂	(D)

∂D

}
,

and so forth. The boundary conditions for the O(1) (9) are identical to (5). For the O(ε) (10) and
O(ε2) (11) equations, the boundary conditions (5) are modified so that ∂Vd,1/∂X = ∂Va,1/∂X =
∂Vd,2/∂X = ∂Va,2/∂X = 0 at X = 0.

The leading-order Vd,0 solution can be presented by

Vd,0 = Re[ei�1T G�1,d (X) − ei(�2T +2πγ )G�2,d (X)]

= 1
2 {|G�1,d (X)|[ei{�1T +arg[G�1,d (X)]} + e−i{�1T +arg[G�1,d (X)]}]

− |G�2,d (X)|[ei{�2T +2πγ+arg[G�2 ,d (X)]} + e−i{�2T +2πγ+arg[G�2 ,d (X)]}]}, (12)

where the functions G�1,d (X), G�2,d (X) are

G�1,d (X) = φ1l

2v∗
d

ei π
8 {Sp

4
√

�1[1 + 	(1)]}−1(
2 + 2 cos φ1

d cosh φ1
d

) [
sin θ1

d + sinh θ1
d + sin φ1

d cosh
(
φ1

d − θ1
d

)
− cos φ1

d sinh
(
φ1

d − θ1
d

) − cosh φ1
d sin

(
φ1

d − θ1
d

) + sinh φ1
d cos

(
φ1

d − θ1
d

)]
(13)

and

G�2,d (X) = φ2l

2v∗
d

ei π
8 {Sp

4
√

�2[1 + 	(1)]}−1(
2 + 2 cos φ2

d cosh φ2
d

) [
sin θ2

d + sinh θ2
d + sin φ2

d cosh
(
φ2

d − θ2
d

)
− cos φ2

d sinh
(
φ2

d − θ2
d

) − cosh φ2
d sin

(
φ2

d − θ2
d

) + sinh φ2
d cos

(
φ2

d − θ2
d

)]
, (14)

and where θ i
d = XSp

4
√

�i[1 + 	(1)]e−iπ/8, φi
d = Sp

4
√

�i[1 + 	(1)]e−iπ/8. Applying the relevant
homogeneous boundary conditions and substituting (14) into (10), we obtain that Vd,1 is of the form

Vd,1 = Re[G2�1,d (X)ei2�1T + G2�2,d (X)ei2�2T

+G(�1+�2),d (X)ei(�1+�2)T + G(�1−�2),d (X)ei(�1−�2)T ], (15)
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where the functions G2�1,d (X), G2�2,d (X), G(�1+�2),d (X), and G(�1−2�2),d (X) may be readily
obtained by substituting (12) into (10), isolating each harmonic and solving the corresponding
ordinary differential equation. Substituting (15) and (12) into (11) yields Vd,2 with the harmonics �1,
3�1, �2, 3�2, 2�1 + �2, �1 + 2�2, 2�1 − �2, and 2�1 − �2. The corresponding functions Va,0,
Va,1, and Va,2 can be calculated by applying a similar approach and will have identical frequencies,
but different mode functions, compared to Vd,0, Vd,1, and Vd,2:

Va,0 = Re[ei�1T G�1,a(X) + ei(�2T +2πγ )G�2,a(X)]

= 1
2 {|G�1,a(X)|[ei{�1T +arg[G�1,a (X)]} + e−i{�1T +arg[G�1,a (X)]}]

+ |G�2,a(X)|[ei{�2T +2πγ+arg[G�2 ,a (X)]} + e−i{�2T +2πγ+arg[G�2 ,a (X)]}]}, (16)

G�1,a(X) = φ1l

2v∗
a

ei π
8 {Sp

4
√

�1[1 − 	(1)]}−1(
2 + 2 cos φ1

a cosh φ1
a

) [
sin θ1

a + sinh θ1
a + sin φ1

a cosh
(
φ1

a − θ1
a

)
− cos φ1

a sinh
(
φ1

a − θ1
a

) − cosh φ1
a sin

(
φ1

a − θ1
a

) + sinh φ1
a cos

(
φ1

a − θ1
a

)]
, (17)

G�2,a(X) = φ2l

2v∗
a

ei π
8 {Sp

4
√

�2[1 − 	(1)]}−1(
2 + 2 cos φ2

a cosh φ2
a

) [
sin θ2

a + sinh θ2
a + sin φ2

a cosh
(
φ2

a − θ2
a

)
− cos φ2

a sinh
(
φ2

a − θ2
a

) − cosh φ2
a sin

(
φ2

a − θ2
a

) + sinh φ2
a cos

(
φ2

a − θ2
a

)]
, (18)

and where θ i
a = XSp

4
√

�i[1 − 	(1)]e−iπ/8, φi
a = Sp

4
√

�i[1 − 	(1)]e−iπ/8.
In Eqs. (12)–(15), describing the average deflection of both filaments Vd = (V1 + V2)/2, the

Sperm number is multiplied everywhere by Sp
4
√

�i[1 + 	(1)]. A different modified Sperm number
Sp

4
√

�i[1 − 	(1)] appears in Eqs. (16)–(18) describing the difference between the deflections of both
filaments Va = (V1 − V2)/2. Since Va = 0 for in-phase actuation and Vd = 0 for antiphase actuation,
Sp

4
√

�i[1 + 	(1)] and Sp
4
√

�i[1 − 	(1)] can be viewed as in-phase and antiphase modified Sperm
numbers.

III. RESULTS

Figure 2 presents the amplitude and phase of the harmonics comprising V1 versus the coordinate
X, for various configurations where ε = 0.1 and Sp = 2.1. In all cases the filaments are actuated at
amplitudes φ1 = φ2 = 15◦ and the normalized frequency of filament 1 is �1 = 0.5. Panels (a)–(d)
present the effect of phase difference γ for filaments actuated at identical frequencies �2 = �1. For
comparison, an isolated filament is presented by a gray smooth line. The interaction with an adjacent
filament with γ = 0 decreases the effective Sperm number, thus increasing the effective stiffness
of the filament and amplitude |F�|. This occurs since hydrodynamic interaction with a second
filament oscillating without phase reduces the viscous force on the filament, thus modifying the
viscous-elastic oscillation dynamics. This yields deflection dynamics identical to an isolated filament
with a modified Sperm number Sp[1 − 	(1)]1/4, where 	(1) is the leading-order interaction term.
Similarly, the leading-order effect of an adjacent filament oscillating at antiphase γ = π is to increase
the effective Sperm number to Sp[1 + 	(1)]1/4, thus decreasing the deflection of the filament. For
γ = 0 the first-order is identically zero, while for both γ = π/2 and γ = π (see panels c and d) the
phase of the first-order correction is nearly independent of X and with values under ≈ 10◦. Panels
(e–f) examine the effect of an adjacent oscillating filament with �2 = 0.2�1 and no phase γ = 0.
Similarly, panels (i–l) examine the opposite case of �2 = 5�1 and γ = 0. The leading-order effect of
the adjacent filament is significant for �2 = 0.2�1 (where it has a similar effect to the leading-order
direct actuation of the filament; see panel e). However, a smaller effect is evident for the case
�2 = 5�1 (see panel i). Panels (f) and (j) examine the phase of the leading-order modes, presenting
an opposite effect where the phase is small and nearly uniform for �2 = 0.2�1 and significant for the
case of �2 = 5�1. The first-order modes (see panels g and k) are dominated by the small frequencies,

044203-6



PROPULSION AND MANEUVERING OF AN ARTIFICIAL …

0

2

4

0

    1

|FΩ|

|FΩ|

FΩ

-л

0

X0        0.2      0.4      0.6       0.8        1X0        0.2      0.4      0.6       0.8        1X0        0.2      0.4      0.6       0.8        1

л

0

-л

FΩ

Ω1 Ω1

Ω2Ω2

Ω2

Ω2

Ω1

γ=00Single cylinder

1800

900

γ=900

00

1800

Single cylinder

2Ω1
2Ω1

2Ω1

2Ω1

Ω1+Ω2

2Ω2 2Ω2

2Ω2
2Ω2

Ω1-Ω2

Ω1-Ω2

Ω1-Ω2

Ω1+Ω2

Ω1+Ω2

Ω1+Ω2

Ω1-Ω2

Ω1

γ=900

γ=900

1800

1800

leading-order, Ω2=0.2Ω1, γ=0 leading-order Ω2=5Ω1, γ=0

leading-order, Ω2=0.2Ω1, γ=0 leading-order, Ω2=5Ω1, γ=0leading-order, Ω2=Ω1

leading-order, Ω2=Ω1

first-order, Ω2=0.2Ω1, γ=0 first-order, Ω2=5Ω1, γ=0

first-order, Ω2=0.2Ω1, γ=0 first-order, Ω2=5Ω1, γ=0

first-order, Ω2=Ω1

first-order, Ω2=Ω1

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

FIG. 2. Axial distributions of the amplitude and phase of the frequencies comprising v1 for various
configurations. In all cases filament 1 is actuated with amplitudeφ1 = 15◦ and frequency�1 = 0.5, the amplitude
of filament 2 is φ2 = φ1, ε = 0.1, and Sp = 2.1. Panels (a)–(d) examine the effect of phase γ difference for
�2 = �1. The modes presented in panels (a), (b) oscillate at frequency �1, and the modes presented in panels
(c), (d) oscillate at frequency 2�1. Panels (e)–(h) examine the effect of an adjacent oscillating filament with
�2 = 0.2�1 and γ = 0. Panels (i)–(l) examine the effect of �2 = 5�1 and γ = 0.

corresponding to smaller effective Sperm numbers of the interaction. Thus, for configurations in
which the minimal frequency (from the set 2�1,2�2,�1 + �2,|�1 − �2|) is significantly smaller
than all other frequencies, the first-order dynamics may be reasonably approximated by the minimal
frequency mode alone (see panel k).

The deflection modes calculated in Sec. III can be applied to calculate the effect of hydrodynamic
interaction between the filaments on the forces and moments acting on an artificial swimmer as
illustrated in Fig. 3. Assuming the viscous resistance of the swimmer body is sufficiently large, the
velocity of the swimmer is negligible compared with the oscillating velocities of the filaments, and
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filament 1

filament 2

d0

F1

F2

body

FIG. 3. Schematic description of an artificial swimmer with two waving elastic filaments actuated at the
base. Turning moment may be generated by difference in the average propulsion forces of the filaments.

thus the force may be computed from [4]

fi =
∫ l

0
s
ξ⊥ − ξ‖

ξ⊥

∂v

∂x

∂4v

∂x4
dx = s

ξ⊥ − ξ‖
ξ⊥

[
∂v

∂x

∂3v

∂x3
− 1

2

∂2v

∂x2

2
]

x=0

. (19)

We define the normalized time-average force in the X direction, denoted by 〈Fi〉, as

〈Fi〉 = 1

T

∫ T

0

{
∂Vi(0,τ )

∂X

∂3Vi(0,τ )

∂X3
− 1

2

[
∂Vi(0,τ )

∂X

]2
}

dτ, (20)

where T → ∞, l0 = 4
√

s/(2πωξ⊥) X = x/l0, Vi = vi/ l0φ
∗, ξ⊥ = 4πμ/[ln (l/rc) + 0.193], ξ‖ =

2πμ/[ln (l/rc) − 0.807], and Fi = fi/(φ∗2l2
0 )2πω(ξ⊥ − ξ‖).

Similarly, for given waving parameters, the energy required to generate actuation of the filaments
can be related to the moment at the clamped end of the filament by

〈Ei〉 =
∫ T

0

∣∣∣∣∂2Vi(0,τ )

∂X2

∂2Vi(0,τ )

∂X∂τ

∣∣∣∣dτ, (21)

where 〈Ei〉 is scaled by sφ∗/l0. The total energy applied to propulsion of a swimmer is
∫ T

0 fiup dt =∫ T

0 f 2
i dt/cd , where up is the speed of the swimmer and cd is the viscous drag coefficient. In

FIG. 4. Average force in the x direction (a) and the ratio 〈Fi〉/〈Mi〉 (b), which is proportional to energetic
efficiency, vs the Sperm number Sp = l/ l0. In all cases, φ1 = φ2 = 25◦, l0 = 4

√
s/(2πωξ⊥) = 70 mm (and

ω1 = ω2), d0 = 14 mm, and rc = 0.5 mm. Isolated filament is marked by smooth lines. Beating filament with
an adjacent filament beating in-phase in marked by dashed lines. Beating filament with an adjacent filament
beating in antiphase is marked by dotted line.
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FIG. 5. Average propulsion force vs Sperm number for filaments 1 (dotted lines) and 2 (dashed lines) with
phase difference of 45◦ (a), 90◦ (b), and 135◦ (c). The steering moment is marked by the red solid line in panels
(a)–(c). Panels (d), (e), and (f) present deflection patterns of filament 1 for 45◦, 90◦, and 135◦, respectively.
Panels (g), (h), and (i) present deflection patterns for Sp = 2.45 of filament 2 for 45◦, 90◦, and 135◦, respectively.
The tags at panels (d)–(i) mark six equally spaced times along the full oscillation period of the first filament.
With the exception of phase, all parameters are identical to Fig. 4.

normalized parameters, the total applied energy is given by

¯〈Ei〉 = 1

CD

∫ T

0

{
∂Vi(0,τ )

∂X

∂3Vi(0,τ )

∂X3
− 1

2

[
∂Vi(0,τ )

∂X

]2
}2

dτ. (22)

Thus, (21) and (22) allow us to estimate the energetic efficiency of the swimmer by the ratio ¯〈Ei〉/〈Ei〉.
Figure 4 presents the average propulsive force (a) and the ratio 〈Ei〉/ ¯〈Ei〉 (b), which is proportional

to energetic efficiency, versus the Sperm number Sp = l/ l0. The parameter l0 is kept constant while
l varies in order to solve (4)–(6) for different Sperm numbers. In all cases both filaments are actuated
at the same frequency and amplitude φ1 = φ2 = 25◦, l0 = 70 mm, d0 = 14 mm, and rc = 0.5 mm.
Results for isolated filament (smooth lines), beating filament with an adjacent filament beating
in-phase (γ = 0◦, dashed lines), and beating filament with an adjacent filament beating in antiphase
(γ = 180◦, dotted line) are presented. Previous studies [2,4], showed that the maximal propulsive
force is generated for Sp ≈ 2.1. However, when a second beating filament is introduced to the
system, the optimal Sperm number is modified. Antiphase beating reduces the optimal Sperm number,
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FIG. 6. (a) Schematic description of the experimental setup consisting of two elastic filaments deforming
due to a prescribed oscillation of the slope at their bases. (b) An illustrative frame obtained with the Canon EOS
60D DSLR camera during an experiment.

while in-phase beating increases the optimal sperm number. The modified optimal number can be
estimated from the leading-order equations by the condition Sp = l/ l0 ≈ 2.1[1 − 	(l,d0)]1/4 for
in-phase beating γ = 0 and Sp = l/ l0 ≈ 2.1[1 + 	(l,d0)]1/4 for antiphase beating γ = π . For the
physical and geometric properties examined in Fig. 4, these conditions yield optimal values of
Sp = l/ l0 ≈ 2.4 for in-phase beating and Sp = l/ l0 ≈ 1.6 for antiphase beating. Panel (a), which
includes first-order interactions with ε = 0.1, presents extrema of Sp = 2.6 for in-phase beating
and Sp = 1.9 for antiphase beating. In addition, hydrodynamic interaction for in-phase beating
decreases the propulsion force as well as the energetic efficiency (see panel b) compared with an
isolated filament. In contrast, antiphase beating is shown to be an optimal actuation with regard to
phase, increasing the propulsive force as well as the energetic efficiency. However, as Sp increases,
the differences in energetic efficiency are reduced, and for an intermediate range of Sp the in-phase
mode is preferable. For all presented configurations, the optimal energetic efficiency is at significantly
lower values of Sp compared with the optimal propulsion force presented in panel (a).

Figure 5 presents the force generated for the two filaments as a function of Sperm number for
cases where the phase difference is not zero. Due to the asymmetric hydrodynamic interaction, there
are different average propulsive forces of filament 1 and 2, which create a turning moment acting on
the body, defined as 〈S〉 where

〈S〉 = d0

2φ∗l0
(〈F1〉 − 〈F2〉). (23)

Panels (a), (b), and (c) in Fig. 5 present the time-averaged forces for filament 1 (dotted lines) and
filament 2 (dashed lines) for phases of γ = 0◦, 90◦, and 135◦, respectively. The corresponding
deflection patterns of the filaments are illustrated in panels (d)–(f) for filament 1 and (g)–(i) for
filament 2. In all cases in panels (d)–(i) Sp = 2.45. While the hydrodynamic interaction yields only
a small effect on the propulsion force, it creates a significant effect on the time-averaged propulsion
force and in some cases reverses the direction of the force applied by the waving filament. This
occurs since, without hydrodynamic interactions, time-averaged propulsion forces are created only
due to small fluid-induced elastic deflections breaking the symmetry of the waving filaments. The
addition of a second waving filament creates an additional mechanism for asymmetry during the
beating period. The time-average turning moment 〈S〉 [see panels (a)–(c)] is marked by a red smooth
line, presenting maximal turning moments for Sp ≈ 1.9 for all of the examined phases. The case of
γ = 90◦ generates the highest steering moment, due to increased resistance acting on filament 1,
and reduced resistance on filament 2, throughout beating cycle [see panels (e) and (h)].
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FIG. 7. Deflection V1 of filament 1 for �1 = 5 and amplitude φ1 = φ2 = 15◦ at six equally spaced times
along the full oscillation period P . Dimensional values are v1 = V1 × 1.4 mm, ω = � × 0.1 Hz, x = X ×
150 mm, and t = T × 0.62 s. Smooth lines denote theoretical results, dots denote experimental data, and dashed
lines denote experimental data polynomial fit. The examine cases are (a) without an adjacent filament, (b) an
adjacent filament with �1 = �2, (c) �2 = 0.8�1, and (d) �2 = 1.2�1. Inserts present the deflection of the
filament at its free end V1(X = 1) vs time. See movies 1–4 in Ref. [26].

IV. EXPERIMENTS

Experiments were conducted to quantify the interaction between the two oscillating elastic
filaments and validate the results presented in Sec. II. The experimental setup is illustrated in Fig. 6.
Actuation is achieved by a pair of Faulhaber 3257G024CR DC motors operating outside of the
fluid, where motion is transferred to the filaments through levers connected to elongated rotation
axes. The bases of the filaments are fixed while the slopes at the bases are forced to oscillate at
predetermined amplitude and frequency. The motors controller is an iPOS4808 BX-CAN drive, and
the elastic filaments are composed of carbon fiber with diameter of 1 mm and length of 150 mm.
The gap at rest between the filaments is d0 = 14 mm. The immersing fluid is Xiameter®PMX-200
Silicone oil with viscosity μ = 59.2 Pa · s and density ρl = 987 kg/m3. The container dimensions
are 0.4 m × 0.3 m × 0.2 m, and the elastic filaments are placed symmetrically to both sides of the
container center plane (see Fig. 6). A Canon EOS 60D DSLR camera with a Canon EF-S 1785 mm f/4–
5.6 IS USM lens was used to record the motion of both filaments at 25 frames per second and resolution
of 1920 × 1080 pixels per frame. The recorded data were processed by open source code [25].

Figure 7 presents the experimental (dashed lines) and theoretical (smooth lines) deflection patterns
V1 of filament 1 oscillating at frequency � = 0.5 and amplitude at φ1 = 15◦ adjacent to filament
2. The inserts present the deflection of the free end of the filament V1(X = 1) for a full cycle
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FIG. 8. Fourier decomposition of the experimental deflection V1 at X = 1, presenting amplitude A� vs
frequency �. Panels (a)–(d) present the frequency decomposition of inserts of panels (a)–(d) in Fig. 7,
respectively. Filled circle markers denote experimental data, and smooth blue lines denote the theoretical
predictions. Red circles denote harmonics expected from the theoretical results. Panels (e)–(h) are magnifications
of (a)–(d) in order to present the amplitudes of the 2�1, 2�2, and �1 + �2 first-order frequencies.

period defined as P . Dimensional values are related to the normalized values by v1 = V1 × 1.4 mm,
ω = � × 0.1 Hz, x = X × 150 mm, and t = T × 0.62 s. For reference, panel (a) (movie 1 [26])
presents the deflection of an elastic filament oscillating without the presence of a second adjacent
filament. Panel (b) (movie 2 [26]) presents the deflection V1 for the case of an adjacent filament
oscillating at identical frequency �1 = �2, identical amplitude φ1 = φ2, and without phase γ = 0.
A significant increase in amplitude of the deflection is clearly evident, and the deflection patterns
remain symmetric in this case. Panels (c) and (d) (movies 3 and 4 [26]) present the effect of an
adjacent filament oscillating at a slightly smaller frequency (�2 = 0.8�1 in panel c) and a slightly
higher frequency (�2 = 1.2�1 in panel d). Since �1 �= �2 in panels (c) and (d), the interaction
dynamics yields a slow mode with frequency of (�1 − �2), which does not appear for cases in
which �1 = �2. We choose to scale time so that the slow mode frequency is �1 − �2 = 1 and the
total period is thus P = 2π , which is an integer multiplication of all other modes. The values of �2

in panels (c) and (d) were chosen to be similar to �1 in order to reduce the effective Sperm number
of the �1 − �2 mode, thus increasing the first-order deflection to be experimentally significant.

Figure 8 presents frequency decomposition (based on MATLAB FFT function) of the experimental
data presented in the inserts of Fig. 7. The blue smooth lines are the theoretical predictions, and the
full circles are the experimental amplitudes (predicted frequencies are filled red circles and other
frequencies are filled black circles). As expected, since �1 ≈ �2 in panels (c), (d), the deflection is
dominated by the frequencies of the actuation in leading-order �1, �2 and the �1 − �2 first-order
harmonic. Panels (e)–(f) are magnifications of panels (a)–(d), focusing on of the amplitudes of the
2�1, 2�1, and �1 + �2 first-order frequencies. For all examined cases presented in Fig. 7, a good
agreement (with errors ≈ 10% or below) between the experimental data and the theoretical results is
evident. Comparison of the amplitudes obtained from frequency decomposition, presented in Fig. 8,
yields a reasonable agreement (with errors ≈ 20% or below) for the leading order modes, (�1,�2).
However, amplitude of higher-order modes presented in panels (c), (d), (g), (h) are small compared
with the experimental resolution.
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V. CONCLUDING REMARKS

This work examined analytically and experimentally the effect of hydrodynamic interaction
between two adjacent waving elastic filaments on the forces and moments applied by the filaments.
For similar actuation frequencies �1 ≈ �2, the slowest �1 − �2 mode was shown to dominate the
first-order dynamics since the amplitude of deflection is inverse to the effective Sperm number and the
frequency of the mode. The time-averaged propulsion forces and moments are significantly affected
from phase of the hydrodynamic interaction, which is an additional mechanism to break symmetry
within the beating cycle. In addition, calculation of the effect of hydrodynamic interaction on the
propulsive forces yielded that antiphase beating is optimal for time-averaged propulsion, in contrast
with the commonly used assumption of maximal efficiency of the synchronized state. Calculation of
turning moments due to phase difference yielded optimal maneuvering for phase of 90◦.

The linearized elastic model and resistive-force theory applied in this work are limited by several
geometric restrictions, such as small deflection to filament length and small changes of the gap
between the filaments. While previous experimental studies such as Tony et al. [4] showed that the
linearized model of a single filament [2] “appears to remain quantitatively correct well beyond its
regime of strict validity,” no such assurance exists for models involving hydrodynamic interaction,
due to the additional requirement of small changes of the gap. Exception to this is in-phase actuation
in which both filaments have identical deflection modes, and thus a nearly constant gap.

While the aim of the current work was the study of the effect of hydrodynamic interaction
between adjacent filaments on artificial swimmers, the results may still provide insight for biological
mechanisms which inherently involve elasticity. The presented analysis yielded that the effect of an
adjacent oscillating filament, with identical in-phase actuation frequency and amplitude, is to decrease
the effective Sperm number. Thus, the optimal propulsion oscillation frequency for an array of flagella
may be expected to be greater compared with the optimal frequency of an isolated flagellum. Future
work may examine nonlinear effects, internal actuation distributed along the filament, as well as a
study of the dynamics of a lattice of oscillating filaments.
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