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Transient gas flow in elastic microchannels
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We study pressure-driven propagation of gas into a two-dimensional microchannel
bounded by linearly elastic substrates. Relevant fields of application include
lab-on-a-chip devices, soft robotics and respiratory flows. Applying the lubrication
approximation, the flow field is governed by the interaction between elasticity
and viscosity, as well as weak rarefaction and low-Mach-number compressibility
effects, characteristic of gaseous microflows. A governing equation describing the
evolution of channel height is derived for the problem. Several physical limits
allow simplification of the governing equation and solution by self-similarity. These
limits, representing different physical regimes and their corresponding time scales,
include compressibility–elasticity–viscosity, compressibility–viscosity and elasticity–
viscosity dominant balances. Transition of the flow field between these regimes
and corresponding exact solutions is illustrated for the case of an impulsive mass
insertion in which the order of magnitude of the deflection evolves in time. For an
initial channel thickness which is similar to the elastic deformation generated by the
background pressure, a symmetry between compressibility and elasticity allows us to
obtain a self-similar solution which includes weak rarefaction effects. The presented
results are validated by numerical solutions of the evolution equation.

Key words: compressible flows, low-Reynolds-number flows, microfluidics

1. Introduction
In this work we analyse the propagation of an ideal Newtonian gas into a thin

micron-sized gap, bounded by linearly elastic substrates. The gap, a deformable two-
dimensional microchannel, is initially filled with gas at atmospheric pressure. The
substrates are modelled as continuous linear spring arrays. At standard atmospheric
conditions, pressure-driven gaseous flows within micron-sized configurations involve
significant viscous resistance which leads to relatively large pressure drops. As a result,
substantial density variations appear which yield ‘low-Mach-number compressibility’
with negligible inertial effects (Taylor & Saffman 1957; Arkilic, Schmidt & Breuer
1997). In addition, weak rarefaction effects resulting from Knudsen numbers at the
range of Kn≈ 0.01 to ≈ 0.1 yield velocity and temperature slip at the solid boundaries
(Cercignani 2000). The examined model is relevant to research fields such as lab-on-a-
chip devices involving gas flows, miniaturized pneumatic soft robots and biomechanics
of respiratory flows.

† Email address for correspondence: amirgat@technion.ac.il
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As far as rigid boundaries are considered, effects of weak rarefaction and
low-Mach-number compressibility on pressure-driven flows were extensively studied
in the context of gaseous micro-fluidics (Ho & Tai 1998; Gad-el-Hak 1999). The
first experimental works were conducted by Pong et al. (1994) and Liu, Tai &
Ho (1995) and presented non-constant pressure gradients in uniform microchannels
associated with compressibility effects. Arkilic et al. (1997) and Zohar et al. (2002)
analytically and experimentally studied gas flow through long uniform microchannels
with both compressibility and velocity-slip effects (among others such as Aubert &
Colin 2001; Jang & Wereley 2004). Gaseous flows through shallow non-uniform
microchannels, involving elements such as bends, constrictions and cavities, were
studied experimentally by Yu et al. (2005), Lee, Wong & Zohar (2001, 2002) and
treated analytically by Gat, Frankel & Weihs (2008, 2009, 2010a,b) and Zaouter,
Lasseux & Prat (2018).

In the current problem we present an analysis of gas flow in a compliant
microchannel configuration. We focus on the limit of large substrate deformation
compared with the initial channel height. In this limit the flow regime is characterized
by a distinct peeling front, similarly to the fronts in free-surface flows (Oron, Davis &
Bankoff 1997) and viscous gravity currents (e.g. Huppert 1982). McEwan & Taylor
(1966) were the first to examine viscous peeling, and studied the removal of an
adhesive strip from a rigid surface. While previous studies modelled the adhesive as
a Hookean elastic material, McEwan & Taylor (1966) examined the opposite limit
of a Newtonian viscous fluid, which enabled calculation of the peeling speed as
a function of the applied tension. Other works involving viscous peeling dynamics
include Hosoi & Mahadevan (2004), who examined the peeling and levitation of
an elastic sheet over a thin viscous film, and Lister, Peng & Neufeld (2013), who
studied axisymmetric viscous peeling of an elastic sheet from a flat rigid surface
by injection of fluid between the surface and the sheet (additional relevant works
include Hodges & Jensen (2002), Hewitt, Balmforth & De Bruyn (2015), Elbaz &
Gat (2016), Thorey & Michaut (2016), Young & Stone (2017)).

The understanding of viscous–elastic dynamics in micron-scale configurations
is of particular relevance due to the widespread use of soft materials such as
polydimethylsiloxane (PDMS) in the fabrication of lab-on-a-chip devices, pneumatic
soft robots and other microfluidic devices. Within the context of lab-on-a-chip devices,
Gervais et al. (2006) have studied the deformation of shallow microchannels in steady
fluid flow and proposed a linear pressure-displacement relation to account for the
loss of pressure drop or non-constant pressure gradient as observed in deformable
microchannels by comparison to rigid-walled channels. Their Hookean-based model,
which was validated experimentally, has since been widely used in studies of
incompressible flows within compliant microchannels (e.g. Dendukuri et al. 2007;
Hardy et al. 2009; Cheung, Toda-Peters & Shen 2012; Kang, Roh & Overfelt
2014; Zeng et al. 2015; Shidhore & Christov 2018). Christov et al. (2018) have
recently presented closed-form solutions based on perturbation methods for the
flow-rate–pressure-drop relation of a shallow rectangular channel whose top wall
is modelled by Kirchhoff–Love plate theory. In other microfluidic applications the
change of channel cross-section due to elastic deformation has also been deemed a
useful applicative tool. These include flow control (Leslie et al. 2009; George, Anoop
& Sen 2015) mixing (Günther et al. 2004; Srinivas & Kumaran 2017) and peristaltic
pumping (Li & Brasseur 1993; Takagi & Balmforth 2011). Within the field of soft
robotics, while propagation of pressurized gas into elastic channels is commonly used
to induce required solid deformations (Ilievski et al. 2011; Onal 2016; Onal et al.
2017), no models of transient gas dynamics have yet been suggested.
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Upper rigid surface

Upper distributed
spring array

Gas-filled gap
region

Lower distributed
spring array

Lower rigid surface

FIGURE 1. A schematic description of the configuration: a gas-filled gap separates two
parallel distributed linear spring arrays bounded by rigid surfaces. The vertical deformation
denoted by d separates the upper and lower substrates symmetrically about the mid-plane,
y= 0.

The current study also relates to fluid–structure interaction models in physiological
flows (we refer the reader to the review of Grotberg & Jensen (2004) and references
therein). Of particular relevance is the work of Gaver et al. (1996) who analysed the
steady propagation of an air finger into a liquid-filled two-dimensional flexible-walled
channel as a model of pulmonary airway reopening. The channel walls were modelled
as linearly elastic substrates but included membrane tension at the fluid interface as
well. Gaver et al. (1996) have revealed a multiple branch behaviour in which the air
pressure of the propagating finger can be associated with two distinct values of its
steady propagation speed. These lead to two distinct regimes of propagation. The first
is a pushing regime in which a recirculation region appears ahead of the air finger and
is pushed by it, while the second is a peeling regime in which the air finger remains
adjacent to the substrate walls, peeling them apart from each other as it propagates.

The present work introduces unsteady gaseous viscous peeling within the framework
of compliant microfluidic studies, while also extending the analysis of rarefied,
low-Mach-number compressible gas flows to include both elasticity and unsteady
peeling dynamics therein. The structure of this work is as follows. In § 2 we define
the problem and present general dimensional governing equations and boundary
conditions. In § 3 we derive the evolution equation for the channel height. In § 4.1 we
present an implicit steady-state solution. In § 4.2 we present self-similar solutions of
the evolution equation for various limits. In § 4.3 we map the transitions between the
different regimes and present numerical validation. In § 4.4 we develop a self-similar
solution which includes weak rarefaction effects for configurations which involve
symmetry between elasticity and compressibility. Concluding remarks are presented
in § 5. A summary of results, including both governing equations and solutions,
which appear in non-dimensional form in §§ 3 and 4, are given in appendix A in
their dimensional form. Appendix B presents a brief scaling argument justifying the
assumption of isothermal conditions.

2. Problem formulation
We examine pressure-driven gaseous viscous flow in a two-dimensional microchannel

bounded by linearly elastic substrates, as illustrated in figure 1. The origin of the (x, y)
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Transient gas flow in elastic microchannels 463

coordinate system is located at the centre of the channel at rest, where x is parallel
to the channel’s streamwise direction. The axial length scale of the configuration is
denoted by l, time is t and temperature is θ0. The gas velocity vector is defined as
u = (u, v), absolute pressure is p, the Newtonian stress tensor is τ , gas shear and
bulk viscosity coefficients are µ and γ , respectively (due to lubrication flow γ will
be neglected), gas density is ρ, the gas constant is R and the gas mean free path is λ.
At rest, the constant gap between the lower and upper substrates is denoted by h0, and
contains gas at background pressure p0. The channel height h, the pressure-induced
vertical deformation d, and the pressure p are related by

h= h0 + d, p= p0 + kd, (2.1a,b)

where k is the stiffness of the substrates. The system is assumed to be symmetric
about the mid-plane y= 0; a discussion of the asymmetric case is given in § 5.

The current model only considers vertical displacements, a common assumption
in elastic microchannels (e.g. Gervais et al. 2006; Hardy et al. 2009). Specifically,
examining the stress exerted by the fluid on the substrate interface, for slender
channels (with aspect ratio ε� 1) the shear stress scales with σxy ∼ εp whereas the
normal stress scales with σyy ∼ p. Thus streamwise displacements due to shear stress
are negligible. In addition, for slender elastic configurations bound to rigid surfaces
(see figure 1, representing practical working configurations such as PDMS bound to
glass) the Hookean requirement of small strain limits the streamwise deformation
to be small compared with channel length, and the vertical deformation to be small
compared with the height of the spring array. The vertical deformation, however,
may be large compared with the initial channel thickness h0, yet still involve small
elastic strains. Given these assumptions, the current model may be used to describe
one-dimensional compressible lubrication flow in other elastic settings which employ
(2.1). Examples are given in § 5.

Under the assumptions of isothermal flow (see appendix B) and negligible body
forces, which are common practice for flows through micron-sized configurations (e.g.
Arkilic, Breuer & Schmidt 2001; Zohar et al. 2002), we begin by considering the
governing equations of motion for a perfect viscous gas. Written in dimensional form
are the momentum equation,

ρ

(
∂u
∂t
+ u · ∇u

)
=−∇p+∇ · τ , (2.2a)

the compressible continuity equation,

∂ρ

∂t
+∇ · (ρu)= 0, (2.2b)

and the equation of state,
p= ρRθ0. (2.2c)

The temperature θ0 is constant (discussion of the assumption of isothermality is given
in appendix B). The stress tensor for a Newtonian gas is given by

τ =µ(∇u+∇utr)− ( 2
3µ− γ )(∇ · u)I. (2.2d)

We define the Knudsen number, Kn (a variable in the present problem), as the ratio
between the molecular mean free path λ and the local channel height h. Its reference
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464 S. B. Elbaz, H. Jacob and A. D. Gat

value Kn0 is defined as the ratio of reference mean free path λ0 (corresponding
to reference pressure p0) to initial channel height h0. Since the mean free path is
inversely proportional to the local pressure, Kn takes on the form

Kn=
λ

h
=Kn0

(
p0

p

)(
h0

h

)
. (2.3)

For the steady cases considered herein Kn0 expresses the outlet Knudsen number,
by analogy to rigid-walled gaseous micro-fluidics. For the transient cases Kn0 is the
Knudsen number ahead of any disturbance where the channel is at rest. The validity of
the continuum assumption requires a vanishingly small Knudsen number (practically,
as small as Kn < 10−3); however, for gas flows through micron-sized configurations
at standard atmospheric conditions the Knudsen number ranges between Kn ≈ 10−1

and 10−2. This Knudsen regime requires modification of the continuum model by
incorporation of velocity slip on the deforming substrate walls. Thus the boundary
conditions for the flow are given by the Navier-slip condition, written in dimensional
form as

u=∓σλ
∂u
∂y

at y=±h/2, (2.4a)

where λ varies with p according to (2.3), as well as the kinematic boundary condition,

v =±
1
2

(
∂h
∂t
+ u

∂h
∂x

)
at y=±h/2, (2.4b)

both implemented at the gas–substrate interface. In (2.4a) σ denotes the streamwise
momentum accommodation coefficient. It is related to the tangential momentum
accommodation coefficient σm via

σ =
2− σm

σm
, (2.5)

which represents the interaction between the gas molecules and the substrate wall
(Chapman & Cowling 1952). A value of σm = 0 corresponds to specular reflection
(zero accommodation), whereas σm= 1 corresponds to full accommodation which will
be the assumed case for the current work, thus in all calculations σ = 1.

3. Derivation of the channel height evolution equation
The displacement of the substrates is assumed to be a linear function of the pressure,

hence d∗= p∗/k may be taken as its characteristic value, where p∗ is the characteristic
gauge pressure (representing the characteristic value of p− p0).

For practical purposes, it is assumed that the characteristic pressure is a known and
controlled input parameter in the system, thus the vertical length scale of d∗ which
enters in the non-dimensionalization (soon to follow) will be replaced by p∗/k where
applicable. We hereafter denote normalized variables by capital letters and define the
dimensionless ratios

ΠH =
h0k
p∗
, ΠP =

p0

p∗
, (3.1a,b)

representing the ratio of initial gap to elastic displacements (also termed prewetting
thickness ratio) and the ratio of external background pressure to p∗, respectively.
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Transient gas flow in elastic microchannels 465

The limit ΠH →∞ corresponds to negligible elastic deformations, while the limit
ΠP→∞ corresponds to negligible compressibility effects.

Scaling according to the lubrication approximation, the corresponding normalized
variables are the coordinates (X,Y), time T , vertical displacement D, channel height H,

X =
x
l
, Y =

yk
p∗
, T =

tp∗3

k2l2µ
, D=

dk
p∗
, H =

hk
p∗
=ΠH +D, (3.2a−e)

fluid velocities (U, V), pressure P and density Λ,

U =
uk2µl

p∗3 , V =
vk3µl2

p∗4 , P=
p
p∗
, Λ=

ρ

p∗/Rθ0
. (3.3a−d)

Normalized linear relations between vertical displacement and pressure or alternatively,
between channel height and pressure readily follow:

D= P−ΠP, H = P+ΠH −ΠP. (3.4a,b)

Applying the above non-dimensionalizations to (2.2), the requirements for validity of
the lubrication approximation are given by the following relations:

ε=
p∗

kl
� 1, εRe=

p∗6

Rθ0k4µ2l2
� 1, (3.5a,b)

where ε represents the slenderness of the configuration and εRe is the reduced
Reynolds number. Consequently, the leading-order balance of the momentum equations
(2.2a) reduces to standard lubrication form,

∂P
∂X
=
∂2U
∂Y2
+O(εRe, ε2), (3.6a)

∂P
∂Y
=O(ε3Re, ε2), (3.6b)

while continuity (2.2b) and the isothermal equation of state (2.2c) are given by

∂Λ

∂T
+
∂(ΛU)
∂X

+
∂(ΛV)
∂Y

= 0, (3.7)

and
Λ= P, (3.8)

respectively. Pressure may thus be substituted for density throughout. When
normalized, the Navier-slip condition (2.4a) takes the form

U =∓
σKn0ΠHΠP

P
∂U
∂Y

at Y =±H/2, (3.9a)

while the kinematic boundary condition (2.4b) reads

V =±
1
2

(
∂H
∂T
+U

∂H
∂X

)
at Y =±H/2. (3.9b)
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The resulting normalized slip length in (3.9a) stems from the definition of the
Knudsen number (see 2.3) and reflects the choice of h0 as the reference height for
Kn0 and p∗/k as the scale of the vertical coordinate y. The formulated peeling problem
has two sources of time evolution. The first comes from the kinematic condition (3.9b)
while the second comes from the unsteady mass conservation equation (3.7). It will
be shown in the following sections that many of the properties of the solution will
be determined by a competition between these two mechanisms.

Applying (3.9a) to the X-momentum equation (3.6a) yields the velocity profile

U =
1
2
∂P
∂X

(
Y2
−

H2

4
− σKn0ΠHΠP

H
P

)
. (3.10)

Integration of the continuity equation with respect to Y across the gas layer and
in conjunction with (3.9b)–(3.10) yields the following evolution equation, relating
channel height H, pressure P and density Λ,

∂(ΛH)
∂T

=
∂

∂X

{(
H3

12
+
σKn0ΠHΠP

2
H2

P

)
∂P
∂X
Λ

}
, (3.11)

which describes conservation of mass as gaseous viscous flow is driven by a pressure
gradient down the compliant-walled channel, where the diffusion coefficient is given
by the classical lubrication term H3/12 as well as a term arising from Navier
slip, associated with rarefaction effects. Elastic effects, i.e. variations in channel
height H due to changes in pressure, are negligible when D � ΠH (i.e. d � h0).
Compressibility effects, i.e. variations in density Λ, are negligible when D � ΠP

(i.e. d� p0/k). Rarefaction effects are negligible when HP� σKn0ΠHΠP. Finally, a
governing equation for the channel height H may be attained by incorporating the
linear relation between pressure and channel height (3.4), and rearranging,

∂H
∂T
=

1
2H +ΠP −ΠH

∂

∂X

{
[H3(H +ΠP −ΠH)+ 6σKn0ΠHΠPH2

]
∂H
∂X

}
, (3.12)

where hereafter T =T/12 for convenience. Equation (3.12) is given in its dimensional
form in (A 1). For some of the cases considered herein it is worthwhile to represent
(3.12) in the deflection variable D, which reads

∂D
∂T
=

1
2D+ΠP +ΠH

∂

∂X

{
[(D+ΠP)(D+ΠH)

3
+ 6σKn0ΠHΠP(D+ΠH)

2
]
∂D
∂X

}
,

(3.13)
and may be convenient due to homogeneous boundary conditions.

4. Solutions of the evolution equation
4.1. Steady state

We start our analysis of the governing equation (3.12) by examining its steady-state
ordinary differential equation (ODE) form in the pressure variable

d
dX

{
[P(P+ΠH −ΠP)

3
+ 6σKn0ΠHΠP(P+ΠH −ΠP)

2
]
dP
dX

}
= 0. (4.1)
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We first note that by taking the limit ΠH → ∞ in (4.1) and neglecting elastic
deformations, we recover the governing equation for the leading-order pressure
distribution of a two-dimensional rigid microchannel (Arkilic et al. 1997),

d2P2

dX2
+ 12σKn0ΠP

d2P
dX2
= 0. (4.2)

Unlike the rigid case, which has an exact explicit solution, the more general elastic
case can only be solved implicitly. Assuming a finite configuration with prescribed
pressures at the inlet and outlet sections (P(X = 0) and P(X = 1), respectively)
integration of (4.1) yields

X(P)=
F(P)− F(P(0))

F(P(1))− F(P(0))
, (4.3a)

where

F(P)= 40σKn0ΠHΠP(P+∆Π)
3
+ 5P(P+∆Π)

4
− (P+∆Π)

5, (4.3b)

and
∆Π ≡ΠH −ΠP. (4.3c)

Solution (4.3) is depicted in figure 2(a) for the case of ΠP = 1, P(0)/P(1) = 2,
Kn0 = 0 (solid lines) and Kn0 = 0.1 (dashed lines) for various values of ΠH . The
rigid pressure distributions ΠH → ∞ (for both slip and no-slip flow) converge to
the solution of (4.2) and have the least curvature (innermost). Smaller values of ΠH
represent larger ratios of elastic deformation to initial channel height h0, which reduce
the pressure gradient near the inlet while increasing it towards the outlet. For constant
initial channel thickness and background pressure (i.e. constant Kn0), decreasing ΠH
decreases the local Knudsen number (as seen in figure 2b) thus decreasing the
effect of rarefaction on the pressure distribution. Figure 2(c) presents the effect of
rarefaction on the mass flow rate versus ΠH . The ratio of non-dimensional flow rate
for the case of velocity slip over the no-slip flow rate Q̃(Kn0 = 0.1)/Q̃(Kn0 = 0) is
presented, where Q̃ = 2

∫ H/2
0 ΛU dY . Rarefaction effects on the mass flow rate tend

to a constant finite value for ΠH→∞, and decrease with ΠH . Figure 2(d) presents
the mass flow rate Q̃ versus the pressure difference for various values of ΠH . While
the gradients of the different lines vary significantly with ΠH for the limit of small
pressures at the inlet, as the inlet pressure increases the viscous resistance no longer
depends on ΠH (or h0) and the gradients converge.

Explicit solutions of (4.3) may be obtained for various physical limits involving ΠP,
ΠH and the deformation variable D for the case of negligible slip Kn0→ 0. These can
be written as

D(X)= [((D(1)+C)N − (D(0)+C)N)X + (D(0)+C)N]1/N −C, (4.4)

where (N,C)= (5, ΠP) for the limit of ΠP, ΠH�D or the symmetric case of ΠP =

ΠH , representing a compressibility–elasticity–viscosity regime, (N, C) = (2, ΠP) for
the limit of ΠH�ΠP,D (compressibility–viscosity regime), (N,C)= (4, ΠH) for the
limit of ΠP�ΠH,D (elasticity–viscosity regime), and finally, (N,C)= (1, 0) for the
linear limit of ΠP, ΠH�D (viscous regime).

4.2. Self-similar Barenblatt solutions for negligible rarefaction effects
While exact solutions of (3.12) are not available, several limits involving negligible
rarefaction effects yield known self-similar solutions. Furthermore, for a given set of
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FIGURE 2. (Colour online) Steady-state solution (4.3) of gaseous viscous flow in a
two-dimensional microchannel bounded by linearly elastic substrates. Gas pressure (a) and
local Knudsen (b) profiles versus X for varying ΠH and P(0)/P(1)= 2. (c) Ratio of mass
flow rates RQ̃ versus ΠH , RQ̃ = Q̃(Kn0)/Q̃(Kn0 = 0), Kn0 = 0.1 (dashed), Kn0 = 0 (solid),
P(0)/P(1) = 2. (d) Mass flow rate versus pressure ratio P(X = 0)/P(X = 1) for various
values of ΠH . For all panels σ = 1 and ΠP = 1. A value of Kn0 = 0.1 was used in (b).

parameters (namely, initial channel height h0, substrate stiffness k and background
pressure p0) the flow field may be described by transition in time between different
approximate solutions associated with different time scales. Physical insight may thus
be gained by mapping the different approximate solutions, their corresponding time
scales and the transitions between them.

We focus on fundamental solutions for the case of impulse-driven peeling – an
abrupt release of a finite mass M (non-dimensional) at T = 0 into the inlet at X = 0.
The integral expressing mass conservation is

M =
∫
∞

0
[ΛH −ΠHΠP] dX =

∫
∞

0
[D2
+ (ΠH +ΠP)D] dX. (4.5)
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The boundary conditions are D→ 0 as X → ∞ (far-field attenuation, equivalently
expressed by P→ ΠP or H→ ΠH) and ∂D/∂X = 0 at X = 0 (no further inlet flux
after the initial injection). For some of the cases considered herein the leading-order
solutions of (3.13) will exhibit compact support and a distinct propagation front,
X = XF(T ). For those cases, the far-field attenuation condition is met exactly at the
front and the upper bound of the mass conservation integral (4.5) may be replaced by
X = XF. The dimensional form of the mass is m = (p∗2lw/kRθ0)M, where w is a
lateral dimension, normal to the (x, y) plane. We note that from a mathematical
standpoint two out of the three parameters ΠH, ΠP and M can be eliminated in the
idealized self-similar problem, since both the height and length scales, d∗ and l, are
arbitrary. However, these parameters are retained due to practical considerations.

4.2.1. Early times D�ΠH , ΠP

For sufficiently early times D � ΠH, ΠP and both elasticity and compressibility
contribute to the peeling process. The leading order of equation (3.13) reduces
to a porous medium equation (PME) of order 2.5 for the variable Q = D2. The
corresponding leading-order mass conservation integral (4.5) can also be expressed in
terms of Q:

∂Q
∂T
=

1
5
∂2Q2.5

∂X2
, M =

∫ XF

0
Q dX. (4.6a,b)

The initial condition is given by Q(X, T = 0) = Mδ(X), where δ is Dirac’s
delta function. Applying Zel’dovich, Kompaneets and Barenblatt’s (ZKB) solution
(Barenblatt 1952) yields the time propagation rate of XF = O(T 2/7) and the peeling
dynamics are given by

D(X, T )= 0.9659M2/7T −1/7

[
1−

(
X

1.45M3/7T 2/7

)2
]1/3

+

, (4.7)

where (s)
+
= max(s, 0). Solution (4.7) is characterized by a compactly supported

region of displacement associated with the peeling process. The solution is given
in its dimensional form in (A 3). The convergence of the full numerical solution of
(3.13) to the early-time approximation (4.7) is shown in figure 3(a,d). Time snapshots
are provided in figure 3(a) along with the maximal channel height (figure 3a inset)
plotted on a double-logarithmic scale. Figure 3(d) illustrates the convergence in the
similarity variables D(X, T ) = ((1/5)T )−1/7F(ξ), where ξ = X((1/5)T )−2/7. The
numerical deformation profiles obtained from time-stepping over multiple decades
were superimposed on the similarity grid. Calculations were performed using a
MATLAB-based nonlinear parabolic partial differential equation (PDE) solver. An
important property of the solution, as can be seen in figure 3(a), is that its global
volume increases with time (for finite mass),

∫ XF

0 D(X, T ) dX =O(T 1/7), a direct
consequence of the compressibility–elasticity coupling. As the added mass propagates
and expands into the channel, the gas pressure decreases and thus D decreases,
eventually invalidating the requirement that D� ΠH, ΠP. This sets a validity time
range of (also given in dimensional form in (A 4))

T �
M2

max(Π 7
H, Π

7
P)

(4.8)

for (4.7) based on D(X = 0, T ).
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FIGURE 3. (Colour online) Convergence of the numerical deformation profiles
obtained from (3.13) to the theoretical results (4.7), (4.10) and (4.13). (a,d)
Compressibility–elasticity–viscosity regime (transitioning towards compressibility–viscosity
regime), (M, ΠH, ΠP)= (2.77× 10−4, 5× 10−3, 0). (b,e) Compressibility–viscosity regime
(approaching from compressibility–elasticity–viscosity regime), (M, ΠH, ΠP) the same
as above. (c, f ) Elasticity–viscosity regime (approaching from compressibility–elasticity–
viscosity regime), (M, ΠH, ΠP) = (2.86 × 10−4, 0, 1 × 10−2). Panels (a), (b) and (c),
respectively, present time snapshot comparisons over several decades and include insets
of the maximal deflection (double-logarithmic scale). Panels (d), (e) and ( f ), respectively,
depict the convergence in the similarity variables (ξ , F). The numerical deformation
profiles obtained from time-stepping were superimposed on the similarity grid, 10
consecutive decades are shown in each case. The values of (M, ΠH, ΠP) used here
correspond to those used in the simulations which will follow in figure 5. In panels (a),
(b) and (c) the grey ellipse numbering scheme defined in figure 4 is used to label the
regimes.
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4.2.2. Intermediate times ΠP�D�ΠH or ΠH�D�ΠP

Beyond the range of (4.8) the solution may branch into one of two regimes,
contingent upon the ratio of ΠH/ΠP. If the ratio is significantly larger than unity
ΠH/ΠP=h0/(p0/k)�1 (corresponding to negligible effects of elasticity and dominant
effects of gas compressibility) an intermediate regime exists where ΠP � D� ΠH .
In this regime, the leading order of equation (3.13) is a porous medium equation of
order 2 for D; the leading-order mass integral (4.5) reduces to volume conserving
form,

∂D
∂T
=
Π 2

H

2
∂2D2

∂X2
, M =ΠH

∫ XF

0
D dX. (4.9a,b)

The solution will thus transition to a propagation rate of XF = O(T 1/3) and the
resulting profile

D(X, T )= 0.7211M2/3Π
−4/3
H T −1/3

[
1−

(
X

2.0801M1/3Π
1/3
H T 1/3

)2
]
+

(4.10)

will emerge in intermediate times with a validity range of

M2

Π 7
H
� T �

M2

Π 4
HΠ

3
P
. (4.11)

See (A 5) and (A 6) for the dimensional forms of (4.10) and (4.11), respectively.
Solution (4.10) represents the limit of dominant gas compressibility, and is identical
to the evolution of compressible low-Reynolds-number gas flow in rigid configurations
and analogous to ideal isothermal gas flow in a homogeneous porous medium
(Leibenzon 1930; Muskat 1937). The relevant time scale of this limit is t ∼
µ/p∗(h0/l)2. Convergence of the numerical solution of (3.13) to the intermediate-time
profiles (4.10) for the case of ΠH/ΠP � 1 is shown in figure 3(b,e). Time
snapshots are provided in figure 3(b) along with the maximal value of D at
the base (figure 3b inset). Figure 3(e) depicts the convergence of superimposed
numerical profiles when collapsed on the self-similar grid using the transformation
D(X, T )= ((Π 2

H/2)T )−1/3F(ξ), where ξ = X((Π 2
H/2)T )−1/3.

Alternatively, for ΠP/ΠH = p0/kh0 � 1, a different intermediate regime exists for
which ΠH � D � ΠP. The leading-order evolution equation is a porous medium
equation of order 4 for D, while (4.5) takes on an alternate volume conserving form,

∂D
∂T
=

1
4
∂2D4

∂X2
, M =ΠP

∫ XF

0
D dX, (4.12a,b)

yielding

D(X, T )= 0.8423M2/5Π
−2/5
P T −1/5

[
1−

(
X

1.4112M3/5Π
−3/5
P T 1/5

)2
]1/3

+

(4.13)

with an XF = O(T 1/5) spread rate, typical of the early-time propagation of the
incompressible peeling problem (e.g. Elbaz & Gat 2016), and a validity range of

M2

Π 7
P
� T �

M2

Π 5
HΠ

2
P
. (4.14)
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See (A 7) and (A 8) for the dimensional forms of (4.13) and (4.14), respectively.
Convergence of the numerical solution of (3.13) to the alternative intermediate-time
profiles (4.13) for the case of ΠP/ΠH� 1 is shown in figure 3(c, f ). Time snapshots
are provided in figure 3(c) along with the maximal channel deflection (figure 3c inset).
Figure 3( f ) depicts the convergence of superimposed numerical profiles when
collapsed on the self-similar grid. The relevant transformation for the current case is
D(X, T )= ((1/4)T )−1/5F(ξ), where ξ = X((1/4)T )−1/5.

We note that the asymptotic ZKB solutions presented thus far fail to capture the
physical boundary condition ahead of the front which must require some form of
regularization. From a numerical standpoint this is achieved by reintroducing small
values of (ΠH, ΠP) as performed presently. This can also be done analytically by
matching the ZKB solutions, which are valid in the bulk outside the front, to an
exponential solution near the front which decays in the far field. The process was
addressed by the authors in a related problem (see Elbaz & Gat 2016).

4.2.3. Late times D�ΠH, ΠP

All solutions will ultimately settle on the late-time behaviour of XF = O(T 1/2) as
T →∞ whether it is the prewetting thickness ratio ΠH or the background to gauge
pressure ratio ΠP that is the final regularization mechanism which linearizes (3.13).
For such late times propagation is governed by the linear heat equation,

∂D
∂T
=
Π 3

H(1+ 6σKn0)

1+ΠH/ΠP

∂2D
∂X2

, (4.15)

with corresponding fundamental solution,

D(X, T )=
M√

π(ΠH +ΠP)ΠPΠ
3
H(1+ 6σKn0)T

exp
{
−

(1+ΠH/ΠP)X2

4Π 3
H(1+ 6σKn0)T

}
, (4.16)

and range of validity,
M2(1+ΠH/ΠP)

Π 5
HΠ

2
P(1+ 6σKn0)

� T . (4.17)

See (A 9) and (A 10) for the dimensional forms of (4.16) and (4.17), respectively.
Velocity slip is shown to accelerate the propagation causing the system to linearize
sooner (this point will be illustrated numerically in § 4.3).

Finally, we note that while the analytical treatment of § 4.2 is of an idealized
impulsive mass insertion, in a more realistic setting where the mass is introduced
over a non-zero time scale T0, a regime which is only valid for T � T0 will be
skipped and not observed.

4.3. Numerical validation of regime transitions
We first illustrate the regime transitions discussed in §§ 4.2.1, 4.2.2 and 4.2.3 in
the flow chart shown in figure 4. It is initiated by an impulsive mass insertion of
magnitude M and flows temporally from left to right. The dominant balances of
equation (3.13) associated with each regime are shown in the top order-of-magnitude
axis of the deflection D in sequence. The regimes are labelled (1), . . . , (4) in grey
ellipses. The corresponding time ranges for each temporal limit are also presented in
the figure and were calculated by requiring the appropriate order of magnitude
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of D for the examined limit from solutions (4.7), (4.10) and (4.13) at X = 0.
Non-dimensional parametric conditions involving (ΠH, ΠP) are stated in dimensional
form (diamonds) in terms of the initial channel thickness h0, channel stiffness k and
background pressure p0.

For the numerical simulation of regime transitions we chose the initial value of
D(X = 0, T → 0)∼ 1 which defines the characteristic deflection d∗ = d(x= 0, t→ 0)
and sets the requirement that ΠH,ΠP� 1 for the appearance of the early-time regime
(i.e. large actuation gauge pressure compared with the background pressure and large
displacement to prewetting thickness ratio). The initial volume

∫
∞

0 D(X, 0) dX was set
constant for all numerical runs. Consequently, the value of M, calculated from (4.5), is
kept constant as (ΠH, ΠP) are varied between simulations but maintained small. The
evolution of the solution through the various regimes is presented in figures 3 and
5. The solution D(X, T ) was first computed from (3.13). The logarithmic derivative
of the peeling front location XF(T ) was then calculated, ΞF ≡ d(log XF)/d(log T ),
based on where D falls below 1 % of its maximal value. The resulting log–log velocity
plot is shown in figure 5. It is convenient since the Barenblatt limit solutions (4.7),
(4.10) and (4.13) appear as lines of constant ΞF in the figure (dashed black). All
solutions will either converge to these lines, representing the limits, or veer away from
them, representing transitions. As shown in the figure, these transitions may occur
over several orders of magnitude of T , suggesting that certain physical processes may
practically take place over segments of T and not the full span presented in the figure.

The transition lines (figure 5) are labelled with the grey ellipse numberings where
applicable, corresponding to the flow chart (see figure 4). Figure 5(a) describes a
single transition between two regimes while figure 5(b) describes two transitions
along three regimes. An additional solution with velocity slip (dotted red) was
also considered along with its no-slip counterpart, both describe transition between
regimes (1)→(4). Examining these (1)→(4) lines the effect of Knudsen diffusion
on the spread rate can be interpreted as follows. At early times rarefaction effects
are negligible since HP � σKn0ΠHΠP. At intermediate times for the examined
impulse-type initial conditions the Knudsen term of the diffusion coefficient of
(3.13) enforces a faster spread rate since it enters with ∼D2 as opposed to the
viscous–compression term which scales as ∼D4. At late times, as both terms
impose a similar propagation rate O(T 1/2), rarefaction effects may still contribute
(altering the prefactor), in accordance with the late-time solution (4.16), but will
not show in figure 5. Figure 5 is supplemented by figure 3 which presents the
numerical deformation profiles for various limits and the convergence of these
profiles to the theoretical results. Figures 3(a,d), 3(b,e) and 3(c, f ) correspond
to solutions (4.7), (4.10) and (4.13), respectively, where panels (a,d) present
convergence to the compressibility–elasticity–viscosity regime (transitioning towards
the compressibility–viscosity regime along line (1)→(3) of figure 5), panels (b,e)
depict convergence to the compressibility–viscosity regime (approaching from the
compressibility–elasticity–viscosity regime along line (1)→(3) of figure 5) and panels
(c, f ) depict convergence to the elasticity–viscosity regime (approaching from the
compressibility–elasticity–viscosity regime along line (1)→(2) of figure 5).

4.4. Self-similar solution with rarefaction effects for D�ΠP −ΠH

In the limit of D�ΠP −ΠH , achieved for sufficiently small difference between the
prewetting thickness ratio and compression ratio (i.e. the physical scale of k≈ p0/h0),
an additional exact self-similar solution may be attained for the case of suddenly
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Elasticity–viscosity
regime

validity range:

Compressibility–elasticity
–viscosity regime

validity range:

Compressibility–viscosity
regime

validity range:

Linearized diffusion
regime

validity range:
Mass

impulse
M

Propagation rate

Propagation rate

Propagation rate

Propagation rate

1

2

3

4

FIGURE 4. Flow chart diagram of impulse-driven transient gaseous flow in a two-
dimensional microchannel bounded by linearly elastic substrates. The diagram describes
the transition in time T between the various propagation regimes associated with
different dominant balances of the governing evolution equation (3.13) (shown in the
top scale of the order of magnitude of the non-dimensional deflection D and its
relation to the prewetting thickness ratio ΠH and the compression ratio ΠP). Dimensional
parametric conditions involving initial channel thickness h0, channel stiffness k and
background pressure p0 are also given. The regimes are labelled in grey ellipse
numberings as follows: (1) compressibility–elasticity–viscosity, (2) elasticity–viscosity,
(3) compressibility–viscosity, (4) linearized diffusion. This numbering scheme is used
accordingly in figures 3 and 5.

applied fixed inlet pressure. Under these conditions both the viscous and Knudsen
diffusion terms of equation (3.12) will enforce a O(T 1/2) spread rate; the change of
variables, f =D+ΠH =D+ΠP, substituted into (3.12) yields a self-similar boundary
value problem in f (η;ΠH), where η= XT −1/2, which includes rarefaction effects

f 5′′
+ 10σKn0Π

2
Hf 3′′
+

5η
2

f 2′
= 0, (4.18a)

f (0)= 1+ΠH, f (∞)=ΠH. (4.18b,c)

The mass in the channel also grows as ∼ T 1/2 with a flux rate Q=Q(ΠH) such that

M =
∫
∞

0
[D2
+ 2ΠHD] dX =QT 1/2, Q=

∫
∞

0
[f 2(η)−Π 2

H] dη. (4.19a,b)

Self-similar profiles for various values of ΠH are presented in figure 6(a) for Kn0= 0
(solid lines) and σ = 1, Kn0 = 0.1 (dashed lines). The effect of rarefaction is shown
to increase the speed of gas propagation, and reduce the gradients of the deformation.
This effect decreases as ΠH and ΠP decrease, since Kn0 is defined ahead of the front,
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4

3

2

1

Elasticity–viscosity

Compressibility–elasticity–viscosity

Compressibility–viscosity

Linearized diffusion

4

1

2

104

1014

106

106

108102

102

1010

1010 10221018

1012

(a)

(b)

FIGURE 5. (Colour online) Numerical simulation of propagation regime transitions of
impulse-driven gas flow in a two-dimensional elastic microchannel and comparison to
theoretical results. Propagation front velocity ΞF ≡ d(log XF)/d(log T ) (logarithmic
derivative) is computed numerically from (3.13) and compared to the theoretical limits
given by (4.7)–(4.16) (dashed black). The transition lines are labelled with the grey
ellipse numberings describing convergence to regimes (1), . . . , (4) (see figure 4). Panel
(a) describes a single transition between two regimes: line (1)→(4) (solid red) no-slip
transition with (M, ΠH, ΠP) = (2.95 × 10−4, 5 × 10−3, 1 × 10−2), line (1)→(4) (dashed
red) transition with velocity slip σKn0 = 0.1 and (M, ΠH, ΠP) the same as above, line
(1)→(3) (solid green) no slip with (M,ΠH,ΠP)= (2.77× 10−4, 5× 10−3, 0), line (1)→(2)
(solid blue) no slip with (M, ΠH, ΠP) = (2.86 × 10−4, 0, 1 × 10−2). Panel (b) describes
transition along three regimes: (1)→(2)→(4), no slip with (M,ΠH,ΠP)= (2.86×10−4,1×
10−5, 1 × 10−2) – the simulation of panel (a) line (1)→(2) was extended further until
the system undergoes linearization at T →∞. For all simulations a Gaussian profile was
used for the initial volume distribution, such that

∫
∞

0 D(X, 0) dX = 2× 10−3, the integral∫
∞

0 D2(X, 0) dX was calculated accordingly. The value of M follows from (4.5); it varies
only slightly between simulations due to the change in (ΠH, ΠP).

while the local Knudsen number decreases as channel height and pressure increase
(see (2.3)). For small ΠP and ΠH , the pressure and height in the peeled region are
greater compared with the background pressure p0 and initial channel thickness h0.
This yields a significantly smaller effective Knudsen number in the peeled region, as
illustrated in figure 6(b).

5. Concluding remarks
The propagation of a gas into micron-sized configurations with linearly elastic

boundaries is governed by interaction between effects of low-Mach-number compress-
ibility, rarefaction, elasticity and viscosity. A governing nonlinear evolution equation
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0.5
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0

0.10(b)

FIGURE 6. (Colour online) Self-similar solutions with rarefaction effects for ΠP=ΠH and
σ = 1. (a) Self-similar deformation profile as a function of the prewetting thickness ratio
ΠH for Kn0 = 0 (solid lines) and Kn0 = 0.1 (dashed lines). (b) Local Knudsen number
as a function of η for various values of ΠH for Kn0 = 0.1. Solution based on numerical
integration of (4.18).

was derived for the flow field. While exact solutions of this equation are not
available, several limiting cases allow solution by self-similarity. These limits
correspond to different physical regimes, including: (i) dominant balance between
compressibility and viscosity, (PME of order 2) characterizing compressible flow
in rigid microchannels, (ii) dominant balance between elasticity and viscosity,
(PME of order 4) characterizing incompressible flow in elastic microchannels, and
(iii) dominant balance involving viscosity, elasticity and compressibility (PME of
order 2.5). Transition of the flow field between the aforementioned regimes and
corresponding exact solutions was illustrated for the case of an impulsive mass
insertion in which the order of magnitude of the deflection evolves in time. A map
of these transitions was presented as a function of the initial channel thickness,
the background pressure and stiffness of the spring array. The case where kh0 ≈ p0
represents symmetry between compressibility and elasticity, and allowed us to obtain
an additional self-similar solution accounting for rarefaction effects.

We note that the analysis presented in §§ 2 and 3 for symmetric displacements
about the mid-plane y = 0 can be readily adapted for the case of different stiffness
coefficients of the upper and lower substrates (e.g. PDMS channels bonded to glass
substrates). In this case we define the total stiffness as k= (p− p0)/d= (k−1

u + k−1
l )
−1

(where ku and kl are the stiffness of the upper and lower surfaces, respectively).
For axial flow in the thin annular gap between an elastic shell and an inner rigid
cylinder, the stiffness k is given by k = Ewt/r2

t (Elbaz & Gat 2016), where E is
Young’s modulus, wt is the shell thickness and rt is the radius of the cylinder. In
addition, based on Gervais et al. (2006), for rectangular microchannels k can be
approximated by k = E/wcc1, where wc is the width of the channel and c1 is an
order-one proportionality constant. Assuming parabolic deformation, the maximal
cross-sectional deflection, taken as d, can be linked to the average deflection 〈d〉 by
2d/3∼ 〈d〉. This leads to a minor adjustment in the true mass m as a function of the
non-dimensional mass M, m= (2p∗2lw/3kRθ0)M.
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FIGURE 7. (Colour online) Time range threshold for the compressibility–elasticity–
viscosity early-time regime of impulse-driven air propagation into a shallow elastic
microchannel. The time range (s) (horizontal axis) is plotted against substrate Young’s
modulus (Pa), for three initial channel heights based on (A 4). The stiffness of the channel
was approximated by k = E/hm, where hm is the thickness of the substrates, taken as
hm = 100h0. Other relevant quantities: viscosity µ= 15× 10−6 Pa s, specific gas constant
R = 286.9 J kg−1 K−1, temperature θ0 = 300 K, mass m = 1 mg, channel width w =
100 µm, background pressure p0 = 101 325 Pa.

Appendix A presents the dimensional form of the governing evolution equation,
the steady-state solution, the early-time compressibility–elasticity–viscosity regime,
intermediate-time compressibility–viscosity regime, intermediate-time elasticity–
viscosity regime and late-time linearized diffusion regime. While the current work
emphasized transitions between the different regimes, in many configurations the
propagation dynamics may be limited to a single regime within the time scale of
interest. This is illustrated in figure 7, which presents the validity time range of the
early compressibility–elasticity–viscosity regime for several initial channel gap values
h0 of 1 µm (solid black line), 10 µm (dashed red line) and 100 µm (dotted blue
line). Gas mass m= 1 mg of air (viscosity µ= 15× 10−6 Pa s, specific gas constant
R = 286.9 J kg−1 K−1) is rapidly introduced into a thin gap between two elastic
regions with thickness of hm = 100h0, temperature θ0 = 300 K and various values of
Young’s modulus (where k = E/hm). Very large time scales of the early-time regime
characterize h0 = 1 µm channels, or configurations with large values of Young’s
modulus E, and thus the early-time regime may be valid throughout the time scale
of interest.

Appendix A. Results in dimensional form
The governing evolution equation for channel height h corresponding to (3.12) reads

∂h
∂t
=

(
k

12µ

)
1

2h− h0 + (p0/k)
∂

∂x

{[
h3(h− h0 + p0/k)+

6σλ0p0

k
h2

]
∂h
∂x

}
, (A 1)

where x is the streamwise coordinate, t is time, p0 is the background pressure, λ0
is the slip length at atmospheric pressure, h0 is the undeformed channel height, σ
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is the streamwise momentum accommodation coefficient, µ is gas viscosity and k is
substrate stiffness.

The implicit steady-state solution relating channel streamwise location x to gas
pressure p, corresponding to (4.3), is given by

x(p)
l
=

f (p)− f (p(x= 0))
f (p(x= l))− f (p(x= 0))

, (A 2a)

where

f (p)= 40σλ0p0k(p− p0 + h0k)3 + 5p(p− p0 + h0k)4 − (p− p0 + h0k)5. (A 2b)

The transient early-time (compressibility–elasticity–viscosity regime) solution for the
deflection d(x, t) in the case of negligible rarefaction effects and corresponding to (4.7)
is given by

d(x, t)=
(60µ)1/7

k5/7
t−1/7

[(
2Rθ0km

S1w

)6/7

−
3(60k2µ)

4/7

35
x2t−4/7

]1/3

+

, S1 = 5.0495,

(A 3)
where (s)

+
=max(s, 0), m is the initial input mass, w the channel width (perpendicular

to the (x, y) plane), R the gas constant and θ0 the temperature. The time range for
which (A 3) is valid, corresponding to (4.8), is given by

t�
k4µ(Rθ0m)2

w2 max(p7
0, (kh0)

7)
. (A 4)

The first (compressibility–viscosity branch) intermediate-time solution for the
deflection d(x, t) in the case of negligible rarefaction effects and corresponding to
(4.10) is given by

d(x, t)=
(24µ)1/3

k5/3h4/3
0

t−1/3

[(
2Rθ0km

S2w

)2/3

−
1
12

(
24kµ

h0

)2/3

x2t−2/3

]
+

, S2 = 4.6188.

(A 5)
The time range for which (A 5) is valid, corresponding to (4.11), is given by

µ(Rθ0m)2

w2k3h7
0
� t�

µ(Rθ0m)2

w2p3
0h4

0
. (A 6)

The second (elasticity–viscosity branch) intermediate-time solution for the deflection
d(x, t) in the case of negligible rarefaction effects and corresponding to (4.13) is given
by

d(x, t)=
(48µ)1/5

k3/5p2/5
0

t−1/5

[(
2Rθ0km

S3w

)6/5

−
3p6/5

0 (48k2µ)
2/5

40
x2t−2/5

]1/3

+

, S3 = 6.1441.

(A 7)
The time range for which (A 7) is valid, corresponding to (4.14), is given by

k4µ(Rθ0m)2

w2p7
0

� t�
µ(Rθ0m)2

kw2p2
0h5

0
. (A 8)
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The late-time (linearized regime) solution for the deflection d(x, t) including
rarefaction effects and corresponding to (4.16) reads

mRθ0
√

12µ√
πkw2p2

0h3
0(1+ h0k/p0)(1+ 6σKn0)t

exp
{

3(1+ h0k/p0)µx2

kh3
0(1+ 6σKn0)t

}
. (A 9)

The time range for which (A 9) is valid, corresponding to (4.17), is given by

µ(Rθ0m)2(1+ h0k/p0)

kw2p2
0h5

0(1+ 6σKn0)
� t. (A 10)

Appendix B. Asymptotic formulation of the assumption of isothermal conditions
In order to assess the order of magnitude of temperature variations for the examined

problem we write the dimensional energy equation for a perfect gas (previously
omitted from (2.2)),

ρcv
Dθ
Dt
=−∇ · q− p∇ · u+ τ : ∇u, (B 1)

where ρ is gas density, cv is the specific heat capacity at constant volume, D denotes
a material derivative (D/Dt ≡ ∂/∂t + u · ∇), θ is gas temperature, t is time, q is
the heat flux density vector satisfying Fourier’s law q=−κ∇θ (κ denoting the heat
conductivity), p is gas pressure, u is the gas velocity vector u= (u, v) and τ is the
Newtonian stress tensor given by (2.2d). We refer to the previously defined normalized
variables in (3.2) and (3.3), and further define the normalized temperature Θ = θ/θ0,
the normalized velocity vector U = (U, V), the characteristic streamwise velocity
component u∗ (where u = u∗U), the characteristic density ρ∗ (where ρ = ρ∗Λ), the
kinematic viscosity ν∗ = µ/ρ∗, the thermal diffusivity α and the heat capacity ratio
γc. Normalizing (B 1) according to these definitions we may derive the leading-order
energy equation in non-dimensional form,

ε2

γc

(
ν∗

α

)(
u∗l
ν∗

)
Λ

DΘ
DT
=

[
∂2Θ

∂Y2
+O(ε2)

]
− ε2 γc − 1

γc

(
ν∗

α

)(
u∗l
ν∗

)
P∇N ·U

+ (γc − 1)
(
ν∗

α

)
u∗2

γcRθ0

[(
∂U
∂Y

)2

+O(ε2)

]
, (B 2)

where D/DT ≡ ∂/∂T + U · ∇N and ∇N is the equivalent non-dimensional operator.
Noting the definitions of the Reynolds number Re = u∗l/ν∗ (see also (3.5a,b)), the
Prandtl number Pr = ν∗/α and the Mach number Ma = u∗/

√
γcRθ0, the order of

magnitude of temperature variations may be written

1Θ =O(ε2Pr Re, Pr Ma2). (B 3)

Since the Prandtl number for common gases (e.g. air, nitrogen etc.) is Pr ≈ 0.7–0.8,
isothermal flow is achieved for sufficiently small ε2Re, Ma2

� 1, assuming the
boundaries of the configuration are maintained at constant temperature. These values
correlate to experimental results of rigid-walled gaseous microflows (e.g. Arkilic et al.
1997; Zohar et al. 2002).
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